Fast Rotating Non-homogeneous Fluids in Thin Domains and the Ekman Pumping Effect

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Marco Bravin, Francesco Fanelli
{"title":"Fast Rotating Non-homogeneous Fluids in Thin Domains and the Ekman Pumping Effect","authors":"Marco Bravin,&nbsp;Francesco Fanelli","doi":"10.1007/s00021-023-00826-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we perform the fast rotation limit <span>\\(\\varepsilon \\rightarrow 0^+\\)</span> of the density-dependent incompressible Navier–Stokes–Coriolis system in a thin strip <span>\\(\\Omega _\\varepsilon :=\\,{\\mathbb {R}}^2\\times \\, \\left. \\right] -\\ell _\\varepsilon ,\\ell _\\varepsilon \\left[ \\right. \\,\\)</span>, where <span>\\(\\varepsilon \\in \\,\\left. \\right] 0,1\\left. \\right] \\)</span> is the size of the Rossby number and <span>\\(\\ell _\\varepsilon &gt;0\\)</span> for any <span>\\(\\varepsilon &gt;0\\)</span>. By letting <span>\\(\\ell _\\varepsilon \\longrightarrow 0^+\\)</span> for <span>\\(\\varepsilon \\rightarrow 0^+\\)</span> and considering Navier-slip boundary conditions at the boundary of <span>\\(\\Omega _\\varepsilon \\)</span>, we give a rigorous justification of the phenomenon of the Ekman pumping in the context of non-homogeneous fluids. With respect to previous studies (performed for flows of contant density and for compressible fluids), our approach has the advantage of circumventing the complicated analysis of boundary layers. To the best of our knowledge, this is the first study dealing with the asymptotic analysis of fast rotating incompressible fluids with variable density in a 3-D setting. In this respect, we remark that the case <span>\\(\\ell _\\varepsilon \\geqslant \\ell &gt;0\\)</span> for all <span>\\(\\varepsilon &gt;0\\)</span> remains largely open at present.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00826-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00826-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we perform the fast rotation limit \(\varepsilon \rightarrow 0^+\) of the density-dependent incompressible Navier–Stokes–Coriolis system in a thin strip \(\Omega _\varepsilon :=\,{\mathbb {R}}^2\times \, \left. \right] -\ell _\varepsilon ,\ell _\varepsilon \left[ \right. \,\), where \(\varepsilon \in \,\left. \right] 0,1\left. \right] \) is the size of the Rossby number and \(\ell _\varepsilon >0\) for any \(\varepsilon >0\). By letting \(\ell _\varepsilon \longrightarrow 0^+\) for \(\varepsilon \rightarrow 0^+\) and considering Navier-slip boundary conditions at the boundary of \(\Omega _\varepsilon \), we give a rigorous justification of the phenomenon of the Ekman pumping in the context of non-homogeneous fluids. With respect to previous studies (performed for flows of contant density and for compressible fluids), our approach has the advantage of circumventing the complicated analysis of boundary layers. To the best of our knowledge, this is the first study dealing with the asymptotic analysis of fast rotating incompressible fluids with variable density in a 3-D setting. In this respect, we remark that the case \(\ell _\varepsilon \geqslant \ell >0\) for all \(\varepsilon >0\) remains largely open at present.

薄域中快速旋转非均匀流体与Ekman抽运效应
在本文中,我们执行了密度相关的不可压缩Navier-Stokes-Coriolis系统在一条细条\(\Omega _\varepsilon :=\,{\mathbb {R}}^2\times \, \left. \right] -\ell _\varepsilon ,\ell _\varepsilon \left[ \right. \,\)上的快速旋转极限\(\varepsilon \rightarrow 0^+\),其中\(\varepsilon \in \,\left. \right] 0,1\left. \right] \)是罗斯比数的大小,\(\ell _\varepsilon >0\)适用于任何\(\varepsilon >0\)。取\(\ell _\varepsilon \longrightarrow 0^+\)为\(\varepsilon \rightarrow 0^+\),并考虑\(\Omega _\varepsilon \)边界处的Navier-slip边界条件,给出了非均质流体中Ekman泵送现象的严格证明。与以前的研究(针对含密度流和可压缩流体进行的研究)相比,我们的方法的优点是避免了对边界层的复杂分析。据我们所知,这是第一个在三维环境下处理变密度快速旋转不可压缩流体渐近分析的研究。在这方面,我们注意到,对于所有人\(\ell _\varepsilon \geqslant \ell >0\)的情况\(\varepsilon >0\)目前在很大程度上仍然悬而未决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信