Stiffness influence on particle separation in polydimethylsiloxane-based deterministic lateral displacement devices

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Julius Marhenke, Tobias Dirnecker, Nicolas Vogel, Mathias Rommel
{"title":"Stiffness influence on particle separation in polydimethylsiloxane-based deterministic lateral displacement devices","authors":"Julius Marhenke,&nbsp;Tobias Dirnecker,&nbsp;Nicolas Vogel,&nbsp;Mathias Rommel","doi":"10.1007/s10404-023-02685-w","DOIUrl":null,"url":null,"abstract":"<div><p>Polydimethylsiloxane (PDMS) is a popular material to rapidly manufacture microfluidic deterministic lateral displacement (DLD) devices for particle separation. However, manufacturing and operation challenges are encountered with decreasing device dimensions required to separate submicron particles. The smaller dimensions, notably, cause high hydraulic resistance, resulting in significant pressure even at relatively low throughputs. This high pressure can lead to PDMS deformation, which, in turn, influences the device performance. These effects may often be overlooked in the design and operation of devices but provide a systematic source of error and inaccuracies. This study focuses in detail on these effects and investigates pillar deformation in detail. Subsequently, we discuss a potential solution to this deformation using thermal annealing to stiffen the PDMS. We evaluate the influence of stiffness on the separation performance at elevated sample flow rates with submicron particles (0.45 and 0.97 µm diameter). An excellent separation performance at high throughput is successfully maintained in stiffer PDMS-based DLD devices, while the conventional devices showed decreased separation performance. However, the increased propensity for delamination constrains the maximal applicable throughput in stiffer devices. PDMS deformation measurements and numerical simulations are combined to derive an iterative model for calculating pressure distribution and PDMS deformation. Finally, the observed separation characteristics and encountered throughput constraints are explained with the iterative model. The results in this study underline the importance of considering pressure-induced effects for PDMS-based DLD devices, provide a potential mitigation of this effect, and introduce an approach for estimating pressure-induced deformation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02685-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02685-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Polydimethylsiloxane (PDMS) is a popular material to rapidly manufacture microfluidic deterministic lateral displacement (DLD) devices for particle separation. However, manufacturing and operation challenges are encountered with decreasing device dimensions required to separate submicron particles. The smaller dimensions, notably, cause high hydraulic resistance, resulting in significant pressure even at relatively low throughputs. This high pressure can lead to PDMS deformation, which, in turn, influences the device performance. These effects may often be overlooked in the design and operation of devices but provide a systematic source of error and inaccuracies. This study focuses in detail on these effects and investigates pillar deformation in detail. Subsequently, we discuss a potential solution to this deformation using thermal annealing to stiffen the PDMS. We evaluate the influence of stiffness on the separation performance at elevated sample flow rates with submicron particles (0.45 and 0.97 µm diameter). An excellent separation performance at high throughput is successfully maintained in stiffer PDMS-based DLD devices, while the conventional devices showed decreased separation performance. However, the increased propensity for delamination constrains the maximal applicable throughput in stiffer devices. PDMS deformation measurements and numerical simulations are combined to derive an iterative model for calculating pressure distribution and PDMS deformation. Finally, the observed separation characteristics and encountered throughput constraints are explained with the iterative model. The results in this study underline the importance of considering pressure-induced effects for PDMS-based DLD devices, provide a potential mitigation of this effect, and introduce an approach for estimating pressure-induced deformation.

Abstract Image

刚度对聚二甲基硅氧烷确定性侧向位移装置中颗粒分离的影响
聚二甲基硅氧烷(PDMS)是快速制造微流体确定性侧向位移(DLD)颗粒分离装置的常用材料。然而,随着分离亚微米颗粒所需的设备尺寸不断减小,制造和操作面临挑战。值得注意的是,较小的尺寸会产生较高的水力阻力,即使在相对较低的吞吐量下也会产生显著的压力。这种高压会导致PDMS变形,进而影响器件性能。这些影响在设备的设计和操作中可能经常被忽视,但却提供了错误和不准确的系统来源。本研究详细地研究了这些影响,并详细地研究了矿柱的变形。随后,我们讨论了使用热退火来加强PDMS的变形的潜在解决方案。我们评估了刚度对亚微米颗粒(直径0.45和0.97µm)在高流速下分离性能的影响。刚性pdms DLD器件在高通量下保持了优异的分离性能,而传统器件的分离性能下降。然而,在较硬的器件中,分层倾向的增加限制了最大适用吞吐量。PDMS变形测量与数值模拟相结合,导出了计算压力分布和PDMS变形的迭代模型。最后,用迭代模型解释了观察到的分离特性和遇到的吞吐量约束。本研究的结果强调了考虑基于pdm的DLD器件的压力诱导效应的重要性,提供了一种潜在的缓解这种效应的方法,并介绍了一种估计压力诱导变形的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信