Solving problems on generalized convex graphs via mim-width

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Flavia Bonomo-Braberman , Nick Brettell , Andrea Munaro , Daniël Paulusma
{"title":"Solving problems on generalized convex graphs via mim-width","authors":"Flavia Bonomo-Braberman ,&nbsp;Nick Brettell ,&nbsp;Andrea Munaro ,&nbsp;Daniël Paulusma","doi":"10.1016/j.jcss.2023.103493","DOIUrl":null,"url":null,"abstract":"<div><p>A bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is <span><math><mi>H</mi></math></span>-convex for some family of graphs <span><math><mi>H</mi></math></span> if there exists a graph <span><math><mi>H</mi><mo>∈</mo><mi>H</mi></math></span> with <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>A</mi></math></span> such that the neighbours in <em>A</em> of each <span><math><mi>b</mi><mo>∈</mo><mi>B</mi></math></span> induce a connected subgraph of <em>H</em>. Many <span><math><mi>NP</mi></math></span>-complete problems are polynomial-time solvable for <span><math><mi>H</mi></math></span>-convex graphs when <span><math><mi>H</mi></math></span> is the set of paths. The underlying reason is that the class has bounded mim-width. We extend this result to families of <span><math><mi>H</mi></math></span>-convex graphs where <span><math><mi>H</mi></math></span> is the set of cycles, or <span><math><mi>H</mi></math></span> is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we strengthen many known results via one general and short proof. We also show that the mim-width of <span><math><mi>H</mi></math></span>-convex graphs is unbounded if <span><math><mi>H</mi></math></span> is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least 3.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"140 ","pages":"Article 103493"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022000023000983/pdfft?md5=fde8f2dacccba7a95013faa87b835770&pid=1-s2.0-S0022000023000983-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000983","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

A bipartite graph G=(A,B,E) is H-convex for some family of graphs H if there exists a graph HH with V(H)=A such that the neighbours in A of each bB induce a connected subgraph of H. Many NP-complete problems are polynomial-time solvable for H-convex graphs when H is the set of paths. The underlying reason is that the class has bounded mim-width. We extend this result to families of H-convex graphs where H is the set of cycles, or H is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least 3. As a consequence, we strengthen many known results via one general and short proof. We also show that the mim-width of H-convex graphs is unbounded if H is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least 3.

利用极小宽度求解广义凸图问题
如果存在一个图H∈H且V(H)=A,使得每个B∈B在A中的邻居都能引出H的连通子图H,那么对于某些图族H,一个二部图G=(A,B,E)是H-凸图,当H是路径集时,H-凸图的许多np完全问题都是多项式时间可解的。潜在的原因是类具有有界的mim-width。我们将这个结果推广到H-凸图的族中,其中H是环的集合,或者H是具有有界最大度和有界顶点数至少为3的树的集合。因此,我们通过一个一般和简短的证明来加强许多已知的结果。我们还证明了H-凸图的最小宽度是无界的,如果H是具有任意大的最大度的树的集合或任意多的顶点的次数至少为3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信