Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the mdx Mouse Model.

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-11-15 DOI:10.1089/nat.2023.0046
Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle
{"title":"Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the <i>mdx</i> Mouse Model.","authors":"Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle","doi":"10.1089/nat.2023.0046","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. <i>Mdx</i> mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"374-380"},"PeriodicalIF":4.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2023.0046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. Mdx mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.

有机阴离子转运蛋白对三环dna介导的mdx小鼠外显子跳变的影响
反义介导的外显子跳脱是治疗杜氏肌营养不良症(DMD)最有前途的策略之一,一些反义寡核苷酸(ASO)药物已经被美国FDA批准用于DMD。这种疗法的潜力仍然受到几个挑战的限制,包括ASOs在靶组织中的分布不佳。事实上,它们大多积聚在肾脏中,并在全身输送后迅速消除。我们在此假设,使用有机阴离子转运蛋白(OAT)抑制剂阻止ASO的肾脏清除可以增加ASO的生物利用度,从而提高其在靶组织中的分布,最终提高其在肌肉中的功效。因此,Mdx小鼠用ASO加或不加名为probenecid的OAT抑制剂治疗。我们的研究结果表明,OAT抑制,或至少使用probenecid,并不能提高aso介导的外显子跳脱方法治疗DMD的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信