Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle
{"title":"Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the <i>mdx</i> Mouse Model.","authors":"Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle","doi":"10.1089/nat.2023.0046","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. <i>Mdx</i> mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"374-380"},"PeriodicalIF":4.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2023.0046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. Mdx mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.