Dongdong Liang, Jie Ren, Huan Liu, Yingxin Yang, Atsha Ambar, Ying Sun* and Cong Wang*,
{"title":"Efficient Strategy for Radiative Cooling Based on Ultra-Broad-Band Infrared Regulation of Flexible Bilayer Film","authors":"Dongdong Liang, Jie Ren, Huan Liu, Yingxin Yang, Atsha Ambar, Ying Sun* and Cong Wang*, ","doi":"10.1021/acsami.3c10493","DOIUrl":null,"url":null,"abstract":"<p >Flexible thermal radiation films with adjustable broad-band infrared radiation could maintain various heat-generating electronic devices working stably in corresponding operating temperatures, making them good candidates for radiative cooling (RC) material. However, the controllable radiation peaks of the metamaterial were narrow, and manipulation was a time-consuming and complex process. Herein, we design a simple TiN/Si bilayer film with controllable broad-band radiation peaks at a thermal radiation wavelength of 3.5–20 μm by impedance matching. Meanwhile, the different bilayer films applied to aluminum devices at different temperatures exhibit outstanding heat dissipation efficiency and maintain the corresponding equilibrium temperature to ensure that devices work stably for a long time. Moreover, the bilayer films deposited on the flexible PI substrates exhibit preferable thermostability and higher tensile strength than existing radiative cooling materials deposited on PDMS, PE, PMMA or TPX, etc. This work provides an effective strategy to realize efficient radiation cooling for flexible electronic devices and spacecraft appendages.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 47","pages":"54875–54885"},"PeriodicalIF":8.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c10493","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible thermal radiation films with adjustable broad-band infrared radiation could maintain various heat-generating electronic devices working stably in corresponding operating temperatures, making them good candidates for radiative cooling (RC) material. However, the controllable radiation peaks of the metamaterial were narrow, and manipulation was a time-consuming and complex process. Herein, we design a simple TiN/Si bilayer film with controllable broad-band radiation peaks at a thermal radiation wavelength of 3.5–20 μm by impedance matching. Meanwhile, the different bilayer films applied to aluminum devices at different temperatures exhibit outstanding heat dissipation efficiency and maintain the corresponding equilibrium temperature to ensure that devices work stably for a long time. Moreover, the bilayer films deposited on the flexible PI substrates exhibit preferable thermostability and higher tensile strength than existing radiative cooling materials deposited on PDMS, PE, PMMA or TPX, etc. This work provides an effective strategy to realize efficient radiation cooling for flexible electronic devices and spacecraft appendages.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.