Subspace Clustering of DNA Microarray Data: Theory, Evaluation, and Applications

A. Tchagang, Fazel Famili, Youlian Pan
{"title":"Subspace Clustering of DNA Microarray Data: Theory, Evaluation, and Applications","authors":"A. Tchagang, Fazel Famili, Youlian Pan","doi":"10.4018/IJCMAM.2014070101","DOIUrl":null,"url":null,"abstract":"Identification of biological significant subspace clusters biclusters and triclusters of genes from microarray experimental data is a very daunting task that emerged, especially with the development of high throughput technologies. Several methods and applications of subspace clustering biclustering and triclustering in DNA microarray data analysis have been developed in recent years. Various computational and evaluation methods based on diverse principles were introduced to identify new similarities among genes. This review discusses and compares these methods, highlights their mathematical principles, and provides insight into the applications to solve biological problems.","PeriodicalId":162417,"journal":{"name":"Int. J. Comput. Model. Algorithms Medicine","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Model. Algorithms Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCMAM.2014070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identification of biological significant subspace clusters biclusters and triclusters of genes from microarray experimental data is a very daunting task that emerged, especially with the development of high throughput technologies. Several methods and applications of subspace clustering biclustering and triclustering in DNA microarray data analysis have been developed in recent years. Various computational and evaluation methods based on diverse principles were introduced to identify new similarities among genes. This review discusses and compares these methods, highlights their mathematical principles, and provides insight into the applications to solve biological problems.
DNA微阵列数据的子空间聚类:理论、评价和应用
从微阵列实验数据中识别生物重要的子空间簇、双簇和三簇基因是一项非常艰巨的任务,特别是随着高通量技术的发展。近年来,子空间聚类、双聚类和三聚类等方法在DNA微阵列数据分析中的应用得到了发展。介绍了基于不同原理的各种计算和评估方法来识别基因之间新的相似性。本文对这些方法进行了讨论和比较,强调了它们的数学原理,并对它们在解决生物学问题中的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信