J. Behrens, Michal Nazarczuk, K. Štěpánová, M. Hoffmann, Y. Demiris, K. Mikolajczyk
{"title":"Embodied Reasoning for Discovering Object Properties via Manipulation","authors":"J. Behrens, Michal Nazarczuk, K. Štěpánová, M. Hoffmann, Y. Demiris, K. Mikolajczyk","doi":"10.1109/ICRA48506.2021.9561212","DOIUrl":null,"url":null,"abstract":"In this paper, we present an integrated system that includes reasoning from visual and natural language inputs, action and motion planning, executing tasks by a robotic arm, manipulating objects, and discovering their properties. A vision to action module recognises the scene with objects and their attributes and analyses enquiries formulated in natural language. It performs multi-modal reasoning and generates a sequence of simple actions that can be executed by a robot. The scene model and action sequence are sent to a planning and execution module that generates a motion plan with collision avoidance, simulates the actions, and executes them. We use synthetic data to train various components of the system and test on a real robot to show the generalization capabilities. We focus on a tabletop scenario with objects that can be grasped by our embodied agent i.e. a 7DoF manipulator with a two-finger gripper. We evaluate the agent on 60 representative queries repeated 3 times (e.g., ’Check what is on the other side of the soda can’) concerning different objects and tasks in the scene. We perform experiments in a simulated and real environment and report the success rate for various components of the system. Our system achieves up to 80.6% success rate on challenging scenes and queries. We also analyse and discuss the challenges that such an intelligent embodied system faces.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present an integrated system that includes reasoning from visual and natural language inputs, action and motion planning, executing tasks by a robotic arm, manipulating objects, and discovering their properties. A vision to action module recognises the scene with objects and their attributes and analyses enquiries formulated in natural language. It performs multi-modal reasoning and generates a sequence of simple actions that can be executed by a robot. The scene model and action sequence are sent to a planning and execution module that generates a motion plan with collision avoidance, simulates the actions, and executes them. We use synthetic data to train various components of the system and test on a real robot to show the generalization capabilities. We focus on a tabletop scenario with objects that can be grasped by our embodied agent i.e. a 7DoF manipulator with a two-finger gripper. We evaluate the agent on 60 representative queries repeated 3 times (e.g., ’Check what is on the other side of the soda can’) concerning different objects and tasks in the scene. We perform experiments in a simulated and real environment and report the success rate for various components of the system. Our system achieves up to 80.6% success rate on challenging scenes and queries. We also analyse and discuss the challenges that such an intelligent embodied system faces.