A track-to-track association method for automotive perception systems

Adam Houénou, P. Bonnifait, V. Berge-Cherfaoui, Jean-François Boissou
{"title":"A track-to-track association method for automotive perception systems","authors":"Adam Houénou, P. Bonnifait, V. Berge-Cherfaoui, Jean-François Boissou","doi":"10.1109/IVS.2012.6232261","DOIUrl":null,"url":null,"abstract":"Recent and future driver assistance systems use more and more sensors, that have individual tracking modules. For target tracking, it becomes necessary to find techniques to manage as simply as possible the use of a great number of independent and heterogeneous sensors, at the different stages of the process. This paper presents a modular highlevel track-fusion architecture for a multisensor environment. This architecture allows the variation of the number and the types of the used sensors with no major change in the tracking algorithm. The paper also tackles the multisensor track-to-track association issue with a new algorithm based on a particular track-to-track distance computation. An example of target tracking method is shown to make use of the proposed architecture and the track-to-track association algorithm.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Recent and future driver assistance systems use more and more sensors, that have individual tracking modules. For target tracking, it becomes necessary to find techniques to manage as simply as possible the use of a great number of independent and heterogeneous sensors, at the different stages of the process. This paper presents a modular highlevel track-fusion architecture for a multisensor environment. This architecture allows the variation of the number and the types of the used sensors with no major change in the tracking algorithm. The paper also tackles the multisensor track-to-track association issue with a new algorithm based on a particular track-to-track distance computation. An example of target tracking method is shown to make use of the proposed architecture and the track-to-track association algorithm.
一种用于汽车感知系统的轨道到轨道关联方法
最近和未来的驾驶员辅助系统使用越来越多的传感器,这些传感器具有单独的跟踪模块。对于目标跟踪,有必要找到尽可能简单地管理在过程的不同阶段使用大量独立和异构传感器的技术。提出了一种适用于多传感器环境的模块化高级轨道融合体系结构。这种架构允许使用传感器的数量和类型的变化,而跟踪算法没有重大变化。本文还提出了一种基于特定航迹距离计算的新算法,解决了多传感器航迹关联问题。最后给出了目标跟踪方法的一个实例,该实例利用了所提出的体系结构和航迹到航迹关联算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信