Verity: Blockchain Based Framework to Detect Insider Attacks in DBMS

Shubham Sahai, Medha Atre, Shubham Sharma, Rahul Gupta, S. Shukla
{"title":"Verity: Blockchain Based Framework to Detect Insider Attacks in DBMS","authors":"Shubham Sahai, Medha Atre, Shubham Sharma, Rahul Gupta, S. Shukla","doi":"10.1109/Blockchain50366.2020.00012","DOIUrl":null,"url":null,"abstract":"Integrity and security of databases are maintained with access control policies and firewalls. However, insider attacks – where someone with administrative privileges tampers with the data – pose a unique challenge. In this paper, we propose Verity – first of a kind system to the best of our knowledge – to detect insider attacks in databases. Verity serves as a dataless framework by which any blockchain network can be used to store fixed-length fingerprints of tuples from any SQL database, without complete migration of the data. Verity uses a formalism for intercepting SQL queries and their results to check the respective tuples’ integrity using the fingerprints stored on the blockchain, and detect an insider attack. We have implemented our technique using Hyperledger Fabric, and SQLite database. Using TPC-H data and CRUD (Create, Read, Update, Delete) SQL queries of varying complexity and nestings, our experiments demonstrate that any overhead of tuple integrity checking remains constant per tuple in a query’s results, and scales linearly.","PeriodicalId":109440,"journal":{"name":"2020 IEEE International Conference on Blockchain (Blockchain)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Blockchain (Blockchain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Blockchain50366.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrity and security of databases are maintained with access control policies and firewalls. However, insider attacks – where someone with administrative privileges tampers with the data – pose a unique challenge. In this paper, we propose Verity – first of a kind system to the best of our knowledge – to detect insider attacks in databases. Verity serves as a dataless framework by which any blockchain network can be used to store fixed-length fingerprints of tuples from any SQL database, without complete migration of the data. Verity uses a formalism for intercepting SQL queries and their results to check the respective tuples’ integrity using the fingerprints stored on the blockchain, and detect an insider attack. We have implemented our technique using Hyperledger Fabric, and SQLite database. Using TPC-H data and CRUD (Create, Read, Update, Delete) SQL queries of varying complexity and nestings, our experiments demonstrate that any overhead of tuple integrity checking remains constant per tuple in a query’s results, and scales linearly.
Verity:基于区块链的框架来检测DBMS中的内部攻击
通过访问控制策略和防火墙来维护数据库的完整性和安全性。然而,内部攻击——拥有管理权限的人篡改数据——构成了一个独特的挑战。在本文中,我们提出了Verity——据我们所知的第一个同类系统——来检测数据库中的内部攻击。Verity作为一个无数据框架,通过该框架,任何区块链网络都可以用于存储来自任何SQL数据库的固定长度的元组指纹,而无需完全迁移数据。Verity使用一种形式来拦截SQL查询及其结果,使用存储在区块链上的指纹来检查各自元组的完整性,并检测内部攻击。我们使用Hyperledger Fabric和SQLite数据库实现了我们的技术。使用TPC-H数据和不同复杂性和嵌套的CRUD(创建、读取、更新、删除)SQL查询,我们的实验表明,在查询结果中,元组完整性检查的任何开销在每个元组中保持不变,并呈线性扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信