{"title":"Learning Traffic Patterns at Intersections by Spectral Clustering of Motion Trajectories","authors":"S. Atev, O. Masoud, N. Papanikolopoulos","doi":"10.1109/IROS.2006.282362","DOIUrl":null,"url":null,"abstract":"We address the problem of automatically learning the layout of a traffic intersection from trajectories of vehicles obtained by a vision tracking system. We present a similarity measure which is suitable for use with spectral clustering in problems that emphasize spatial distinctions between vehicle trajectories. The robustness of the method to small perturbations and its sensitivity to the choice of parameters are evaluated using real-world data","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.282362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
We address the problem of automatically learning the layout of a traffic intersection from trajectories of vehicles obtained by a vision tracking system. We present a similarity measure which is suitable for use with spectral clustering in problems that emphasize spatial distinctions between vehicle trajectories. The robustness of the method to small perturbations and its sensitivity to the choice of parameters are evaluated using real-world data