Hak-soo Yu, Nam-Seog Kim, Young-Jae Son, Yong-geol Kim, Hyo-Chang Kim, Uk-Rae Cho, H. Byun
{"title":"A SRAM Core Architecture with Adaptive Cell Bias Scheme","authors":"Hak-soo Yu, Nam-Seog Kim, Young-Jae Son, Yong-geol Kim, Hyo-Chang Kim, Uk-Rae Cho, H. Byun","doi":"10.1109/VLSIC.2006.1705343","DOIUrl":null,"url":null,"abstract":"This paper describes an adaptive cell bias scheme that is proposed to achieve high performance and stability for a low power, high speed, and high density SRAM core with less process variation. The proposed scheme is featured with constrained-successive cell bias optimization method that determines the optimal cell bias condition sequentially to meet both the speed and stability target of a given SRAM core. The architecture with adaptive cell bias scheme is applied to a 144Mb double stacked S3 SRAM and leads to 49% reduction in SRAM core performance parameter variations with 8% area overhead. The power reduction is 21%","PeriodicalId":366835,"journal":{"name":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2006.1705343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper describes an adaptive cell bias scheme that is proposed to achieve high performance and stability for a low power, high speed, and high density SRAM core with less process variation. The proposed scheme is featured with constrained-successive cell bias optimization method that determines the optimal cell bias condition sequentially to meet both the speed and stability target of a given SRAM core. The architecture with adaptive cell bias scheme is applied to a 144Mb double stacked S3 SRAM and leads to 49% reduction in SRAM core performance parameter variations with 8% area overhead. The power reduction is 21%