Identification of switched reluctance machine inductance using artificial neuronal network

H. Oubouaddi, A. Ouannou, L. Kadi, A. Brouri
{"title":"Identification of switched reluctance machine inductance using artificial neuronal network","authors":"H. Oubouaddi, A. Ouannou, L. Kadi, A. Brouri","doi":"10.1109/IRASET52964.2022.9737988","DOIUrl":null,"url":null,"abstract":"This paper aims, to presents a new method for identified the parameters of switched reluctance machine (SRM) using neural network and Hammerstein model. This latter, is consists of a static nonlinear block followed by a dynamic linear block. Thus, the inherent magnetic nonlinearity of the SRM must be taken into account by appropriate identification of the machine parameters. The model of Hammerstein is verified and compared to neural networks and polynomial method.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9737988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims, to presents a new method for identified the parameters of switched reluctance machine (SRM) using neural network and Hammerstein model. This latter, is consists of a static nonlinear block followed by a dynamic linear block. Thus, the inherent magnetic nonlinearity of the SRM must be taken into account by appropriate identification of the machine parameters. The model of Hammerstein is verified and compared to neural networks and polynomial method.
基于人工神经网络的开关磁阻电机电感辨识
提出了一种基于神经网络和Hammerstein模型的开关磁阻电机(SRM)参数识别新方法。后者由一个静态非线性块和一个动态线性块组成。因此,必须通过适当识别机器参数来考虑SRM固有的磁非线性。对Hammerstein模型进行了验证,并与神经网络和多项式方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信