Accelerating Numerical Linear Algebra Kernels on a Scalable Run Time Reconfigurable Platform

P. Biswas, Pramod Udupa, Rajdeep Mondal, Keshavan Varadarajan, M. Alle, S. Nandy, R. Narayan
{"title":"Accelerating Numerical Linear Algebra Kernels on a Scalable Run Time Reconfigurable Platform","authors":"P. Biswas, Pramod Udupa, Rajdeep Mondal, Keshavan Varadarajan, M. Alle, S. Nandy, R. Narayan","doi":"10.1109/ISVLSI.2010.65","DOIUrl":null,"url":null,"abstract":"Numerical Linear Algebra (NLA) kernels are at the heart of all computational problems. These kernels require hardware acceleration for increased throughput. NLA Solvers for dense and sparse matrices differ in the way the matrices are stored and operated upon although they exhibit similar computational properties. While ASIC solutions for NLA Solvers can deliver high performance, they are not scalable, and hence are not commercially viable. In this paper, we show how NLA kernels can be accelerated on REDEFINE, a scalable runtime reconfigurable hardware platform. Compared to a software implementation, Direct Solver (Modified Faddeev's algorithm) on REDEFINE shows a 29X improvement on an average and Iterative Solver (Conjugate Gradient algorithm) shows a 15-20% improvement. We further show that solution on REDEFINE is scalable over larger problem sizes without any notable degradation in performance.","PeriodicalId":187530,"journal":{"name":"2010 IEEE Computer Society Annual Symposium on VLSI","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Numerical Linear Algebra (NLA) kernels are at the heart of all computational problems. These kernels require hardware acceleration for increased throughput. NLA Solvers for dense and sparse matrices differ in the way the matrices are stored and operated upon although they exhibit similar computational properties. While ASIC solutions for NLA Solvers can deliver high performance, they are not scalable, and hence are not commercially viable. In this paper, we show how NLA kernels can be accelerated on REDEFINE, a scalable runtime reconfigurable hardware platform. Compared to a software implementation, Direct Solver (Modified Faddeev's algorithm) on REDEFINE shows a 29X improvement on an average and Iterative Solver (Conjugate Gradient algorithm) shows a 15-20% improvement. We further show that solution on REDEFINE is scalable over larger problem sizes without any notable degradation in performance.
在可扩展运行时可重构平台上加速数值线性代数核
数值线性代数(NLA)核是所有计算问题的核心。这些内核需要硬件加速来提高吞吐量。密集矩阵和稀疏矩阵的NLA求解器在矩阵存储和操作的方式上有所不同,尽管它们表现出相似的计算特性。虽然NLA求解器的ASIC解决方案可以提供高性能,但它们不可扩展,因此在商业上不可行。在本文中,我们展示了如何在REDEFINE(一个可扩展的运行时可重构硬件平台)上加速NLA内核。与软件实现相比,直接求解器(改进的Faddeev算法)在define上显示了平均29X的改进,迭代求解器(共轭梯度算法)显示了15-20%的改进。我们进一步表明,在REDEFINE上的解决方案可以扩展到更大的问题规模,而不会出现任何明显的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信