Use of probabilistic graphical methods for online map validation

Andrea Fabris, L. Parolini, Sebastian Schneider, A. Cenedese
{"title":"Use of probabilistic graphical methods for online map validation","authors":"Andrea Fabris, L. Parolini, Sebastian Schneider, A. Cenedese","doi":"10.1109/ivworkshops54471.2021.9669245","DOIUrl":null,"url":null,"abstract":"In the world of autonomous driving, high resolution maps play a fundamental role. Such maps are highly accurate representations of the environment and are essential for all the algorithms of strategy and path planning operations. Unfortunately, it is not always possible to guarantee the total reliability of these maps and therefore it is necessary to design a procedure for their validation. In this paper we introduce a framework for validating map data at run-time based on probabilistic graphical models. Results from simulations show the capabilities of the proposed approach and highlight the need to find an appropriate balance between model accuracy and complexity.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the world of autonomous driving, high resolution maps play a fundamental role. Such maps are highly accurate representations of the environment and are essential for all the algorithms of strategy and path planning operations. Unfortunately, it is not always possible to guarantee the total reliability of these maps and therefore it is necessary to design a procedure for their validation. In this paper we introduce a framework for validating map data at run-time based on probabilistic graphical models. Results from simulations show the capabilities of the proposed approach and highlight the need to find an appropriate balance between model accuracy and complexity.
使用概率图形方法在线地图验证
在自动驾驶领域,高分辨率地图扮演着基础性的角色。这样的地图是对环境的高度精确的表示,对于所有策略和路径规划操作的算法都是必不可少的。不幸的是,不可能总是保证这些地图的完全可靠性,因此有必要设计一个程序来验证它们。本文介绍了一个基于概率图模型的运行时地图数据验证框架。仿真结果表明了所提出方法的能力,并强调了在模型精度和复杂性之间找到适当平衡的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信