Design and implementation of a radiation tolerant on-board computer for science technology satellite-3

Dong-Soo Kang, Kyoung-Son Jhang, Dae-Soo Oh
{"title":"Design and implementation of a radiation tolerant on-board computer for science technology satellite-3","authors":"Dong-Soo Kang, Kyoung-Son Jhang, Dae-Soo Oh","doi":"10.1109/AHS.2010.5546260","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of a radiation tolerant on-board computer (OBC) for the science and technology satellite-3 (STSAT-3). SRAM-based FPGAs are replacing traditional integrated circuits for space applications. However, it is difficult to employ the approach in space applications without radiation tolerant schemes to deal with the radiation effects such as single event upset (SEU). To mitigate the SEU effect, we apply a triple modular redundancy (TMR) scheme to the STSAT-3 OBC based on FPGA. Although there is an overhead in area, power and minimum clock period, we notice through a radiation test in an irradiation facility that our TMR based OBC is immune to the radiation environments up to a proton energy of 20.3MeV. The radiation environment of the test is expected to be more severe than the environment in which STSAT-3 is to be located.","PeriodicalId":101655,"journal":{"name":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2010.5546260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes the design and implementation of a radiation tolerant on-board computer (OBC) for the science and technology satellite-3 (STSAT-3). SRAM-based FPGAs are replacing traditional integrated circuits for space applications. However, it is difficult to employ the approach in space applications without radiation tolerant schemes to deal with the radiation effects such as single event upset (SEU). To mitigate the SEU effect, we apply a triple modular redundancy (TMR) scheme to the STSAT-3 OBC based on FPGA. Although there is an overhead in area, power and minimum clock period, we notice through a radiation test in an irradiation facility that our TMR based OBC is immune to the radiation environments up to a proton energy of 20.3MeV. The radiation environment of the test is expected to be more severe than the environment in which STSAT-3 is to be located.
科技卫星3号耐辐射星载计算机的设计与实现
介绍了科学技术卫星3号(STSAT-3)耐辐射机载计算机(OBC)的设计与实现。基于sram的fpga正在取代传统的集成电路用于空间应用。然而,在空间应用中,如果没有抗辐射方案来处理单事件扰动等辐射效应,则很难将该方法应用于空间应用。为了减轻SEU效应,我们将三模冗余(TMR)方案应用于基于FPGA的STSAT-3 OBC。尽管在面积、功率和最小时钟周期方面存在开销,但我们通过在辐照设施中的辐射测试发现,我们基于TMR的OBC对质子能量高达20.3MeV的辐射环境具有免疫力。测试的辐射环境预计将比STSAT-3所在的环境更恶劣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信