A Comparative Study of Si/Ge and GaSb/InAs Tunnel FET-Based Cellular Neural Network

A. Trivedi, Susmita Dey Manasi
{"title":"A Comparative Study of Si/Ge and GaSb/InAs Tunnel FET-Based Cellular Neural Network","authors":"A. Trivedi, Susmita Dey Manasi","doi":"10.1109/ISVLSI.2016.39","DOIUrl":null,"url":null,"abstract":"This work presents a comparative analysis of Si/Ge and GaSb/InAs heterojunction Tunnel FET (TFET)-based cellular neural networks (CNNs). TFET-based CNNs are also compared against an equivalent FinFET-based CNN. A simulation methodology is shown to project realistic estimation of TFET-CNN performance based on the measured IDS-VGS characteristics of TFETs. III-V-TFET (i.e., GaSb/InAs TFET) shows a higher performance in CNN than Si/Ge-TFET due to a higher ON-current and much steeper switching slope (SS) in III-V-TFET. Meanwhile, Si/Ge-TFET shows a much lower OFF-current than III-V-TFET, and it is more suitable for ultralow power CNN applications. Cohesive simulation methodology discussed in the work also identifies that suppression of trap-assisted-tunneling (TAT)-induced leakage is critical to enable energy efficient TFET-based CNN. While a higher gate-to-drain capacitance (CGD, Miller capacitance) becomes a challenge in TFET-based digital designs, suitable design techniques are described to suppress its implications in throughput efficiency of TFET-CNN. Application of TFET-CNN is considered for image processing. Power-performance characteristics of CNN designs based on both the TFETs are compared.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comparative analysis of Si/Ge and GaSb/InAs heterojunction Tunnel FET (TFET)-based cellular neural networks (CNNs). TFET-based CNNs are also compared against an equivalent FinFET-based CNN. A simulation methodology is shown to project realistic estimation of TFET-CNN performance based on the measured IDS-VGS characteristics of TFETs. III-V-TFET (i.e., GaSb/InAs TFET) shows a higher performance in CNN than Si/Ge-TFET due to a higher ON-current and much steeper switching slope (SS) in III-V-TFET. Meanwhile, Si/Ge-TFET shows a much lower OFF-current than III-V-TFET, and it is more suitable for ultralow power CNN applications. Cohesive simulation methodology discussed in the work also identifies that suppression of trap-assisted-tunneling (TAT)-induced leakage is critical to enable energy efficient TFET-based CNN. While a higher gate-to-drain capacitance (CGD, Miller capacitance) becomes a challenge in TFET-based digital designs, suitable design techniques are described to suppress its implications in throughput efficiency of TFET-CNN. Application of TFET-CNN is considered for image processing. Power-performance characteristics of CNN designs based on both the TFETs are compared.
基于Si/Ge和GaSb/InAs隧道场效应效应的细胞神经网络比较研究
本文介绍了基于Si/Ge和GaSb/InAs异质结隧道场效应晶体管(TFET)的细胞神经网络(cnn)的比较分析。基于tfet的CNN也与等效的基于finfet的CNN进行了比较。基于测量的tfet的IDS-VGS特性,展示了一种模拟方法来预测TFET-CNN性能的现实估计。III-V-TFET(即GaSb/InAs TFET)在CNN中表现出比Si/Ge-TFET更高的性能,因为III-V-TFET具有更高的导通电流和更陡的开关斜率(SS)。同时,Si/Ge-TFET的off电流远低于III-V-TFET,更适合超低功耗CNN应用。工作中讨论的内聚模拟方法还表明,抑制陷阱辅助隧道(TAT)引起的泄漏对于实现节能的基于tfet的CNN至关重要。虽然较高的栅漏电容(CGD, Miller电容)成为基于tfet的数字设计的挑战,但描述了合适的设计技术来抑制其对TFET-CNN吞吐量效率的影响。研究了TFET-CNN在图像处理中的应用。比较了基于两种tfet的CNN设计的功率性能特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信