Discovering Local Outlier Based on Rough Clustering

Hongjuan Mi
{"title":"Discovering Local Outlier Based on Rough Clustering","authors":"Hongjuan Mi","doi":"10.1109/ISA.2011.5873272","DOIUrl":null,"url":null,"abstract":"The density at a data point is defined based on kernel function. And we introduce weight to refine rough k-means algorithm. Then we construct the formula for calculating local outlier score based on the clusters generated by the refined rough k-means algorithm. We use a synthetic data set and a real-world data set to verify that the new technique for local outliers detection is not only accurate but also efficient.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The density at a data point is defined based on kernel function. And we introduce weight to refine rough k-means algorithm. Then we construct the formula for calculating local outlier score based on the clusters generated by the refined rough k-means algorithm. We use a synthetic data set and a real-world data set to verify that the new technique for local outliers detection is not only accurate but also efficient.
基于粗糙聚类的局部离群点发现
数据点上的密度是基于核函数定义的。并引入权值来改进粗糙k-means算法。然后基于改进的粗糙k-means算法生成的聚类,构造局部离群值的计算公式。我们使用合成数据集和实际数据集验证了局部异常点检测的新技术不仅准确而且高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信