{"title":"Sparse Trigger Pattern Guided Deep Learning Model Watermarking","authors":"Chun-Shien Lu","doi":"10.1145/3531536.3532961","DOIUrl":null,"url":null,"abstract":"Watermarking neural networks (NNs) for ownership protection has received considerable attention recently. Resisting both model pruning and fine-tuning is commonly considered to evaluate the robustness of a watermarked NN. However, the rationale behind such a robustness is still relatively unexplored in the literature. In this paper, we study this problem to propose a so-called sparse trigger pattern (STP) guided deep learning model watermarking method. We provide empirical evidence to show that trigger patterns are able to make the distribution of model parameters compact, and thus exhibit interpretable resilience to model pruning and fine-tuning. We find the effect of STP can also be technically interpreted as the first layer dropout. Extensive experiments demonstrate the robustness of our method.","PeriodicalId":164949,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531536.3532961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Watermarking neural networks (NNs) for ownership protection has received considerable attention recently. Resisting both model pruning and fine-tuning is commonly considered to evaluate the robustness of a watermarked NN. However, the rationale behind such a robustness is still relatively unexplored in the literature. In this paper, we study this problem to propose a so-called sparse trigger pattern (STP) guided deep learning model watermarking method. We provide empirical evidence to show that trigger patterns are able to make the distribution of model parameters compact, and thus exhibit interpretable resilience to model pruning and fine-tuning. We find the effect of STP can also be technically interpreted as the first layer dropout. Extensive experiments demonstrate the robustness of our method.