An asymmetric indexed image based technique for automatic ulcer detection in wireless capsule endoscopy images

A. Kundu, S. Fattah
{"title":"An asymmetric indexed image based technique for automatic ulcer detection in wireless capsule endoscopy images","authors":"A. Kundu, S. Fattah","doi":"10.1109/R10-HTC.2017.8289062","DOIUrl":null,"url":null,"abstract":"This paper proposes an automatic technique to detect ulcer frames from wireless capsule endoscopy (WCE) videos utilizing the histogram of asymmetric RGB indexed image. Incorporating asymmetry in calculating the indexed image allows to impose higher priority to more informative color plane and lower priority to less informative color plane. Therefore, in this paper, a color histogram extracted from asymmetric indexed image is proposed as feature, instead of conventional histogram from original WCE image. Exhaustive experimentation on publicly available WCE video database validate that significant differences can be obtained between ulcer and non-ulcer images in histogram patterns of asymmetric indexed image. The supervised support vector machine (SVM) classifier with Gaussian radial basis function (RBF) kernel is used to evaluate the classification performance.","PeriodicalId":411099,"journal":{"name":"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2017.8289062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes an automatic technique to detect ulcer frames from wireless capsule endoscopy (WCE) videos utilizing the histogram of asymmetric RGB indexed image. Incorporating asymmetry in calculating the indexed image allows to impose higher priority to more informative color plane and lower priority to less informative color plane. Therefore, in this paper, a color histogram extracted from asymmetric indexed image is proposed as feature, instead of conventional histogram from original WCE image. Exhaustive experimentation on publicly available WCE video database validate that significant differences can be obtained between ulcer and non-ulcer images in histogram patterns of asymmetric indexed image. The supervised support vector machine (SVM) classifier with Gaussian radial basis function (RBF) kernel is used to evaluate the classification performance.
基于非对称索引图像的无线胶囊内窥镜图像溃疡自动检测技术
本文提出了一种利用非对称RGB索引图像直方图自动检测无线胶囊内窥镜(WCE)视频中溃疡帧的技术。在计算索引图像时结合不对称允许对信息较多的颜色平面施加较高的优先级,对信息较少的颜色平面施加较低的优先级。因此,本文提出了从非对称索引图像中提取颜色直方图作为特征,而不是从原始WCE图像中提取常规直方图。在公开可用的WCE视频数据库上进行详尽的实验,验证了非对称索引图像的直方图模式在溃疡和非溃疡图像之间存在显著差异。采用具有高斯径向基函数(RBF)核的监督支持向量机(SVM)分类器对分类性能进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信