Robust autotuning MPC for a class of process control applications

C. Ionescu, D. Copot, A. Maxim, E. Dulf, R. Both, R. Keyser
{"title":"Robust autotuning MPC for a class of process control applications","authors":"C. Ionescu, D. Copot, A. Maxim, E. Dulf, R. Both, R. Keyser","doi":"10.1109/AQTR.2016.7501356","DOIUrl":null,"url":null,"abstract":"This paper introduces a robust methodology for autotuning design parameters in the EPSAC (Extended Prediction Self-Adaptive Control) approach to MPC (Model based Predictive Control). The method requires from the user solely a well-chosen sampling period of the process and, in case of process with time delay, the amount of delayed samples. The main design parameter, the prediction horizon, is related to the open loop dynamics of the system and set to a relatively large value for a robust control performance. Process model is obtained apriori from step response in presence of 20% noise and later updated during closed loop simulations. The results indicate in both simulation and experimental study that the methodology is suitable for some classes of chemical processes or other processes with similar dynamic profiles.","PeriodicalId":110627,"journal":{"name":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","volume":"333 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2016.7501356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper introduces a robust methodology for autotuning design parameters in the EPSAC (Extended Prediction Self-Adaptive Control) approach to MPC (Model based Predictive Control). The method requires from the user solely a well-chosen sampling period of the process and, in case of process with time delay, the amount of delayed samples. The main design parameter, the prediction horizon, is related to the open loop dynamics of the system and set to a relatively large value for a robust control performance. Process model is obtained apriori from step response in presence of 20% noise and later updated during closed loop simulations. The results indicate in both simulation and experimental study that the methodology is suitable for some classes of chemical processes or other processes with similar dynamic profiles.
鲁棒自动调谐MPC的一类过程控制应用
本文介绍了一种基于模型的预测控制(MPC)的扩展预测自适应控制(EPSAC)方法中设计参数自整定的鲁棒方法。该方法只需要用户对过程进行精心选择的采样周期,如果过程有时间延迟,则需要延迟采样的数量。主要的设计参数,预测水平,与系统的开环动力学有关,并设置为一个相对较大的值,以获得鲁棒控制性能。过程模型由存在20%噪声的阶跃响应先验得到,然后在闭环仿真中更新。仿真和实验研究结果表明,该方法适用于某些类型的化学过程或具有类似动态特征的其他过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信