An architecture of decision feedback differential phase detection of M-ary DPSK signals

Chang-Kon Kim, Jiyong Yoon, J. Chong
{"title":"An architecture of decision feedback differential phase detection of M-ary DPSK signals","authors":"Chang-Kon Kim, Jiyong Yoon, J. Chong","doi":"10.1109/TENCON.1999.818346","DOIUrl":null,"url":null,"abstract":"An architecture of decision feedback differential phase detection (DF-DPD) of M-ary DPSK signals is proposed. Conventional differential detection of M-ary DPSK signals uses the phase difference between a current symbol and the previous symbol. This method can make the receiver architecture simple. But it has poorer BER performance than coherent detection because it uses the previous noisy signal as the phase reference. To improve the BER performance of conventional differential detection, multiple symbol differential detection methods, such as maximum likelihood differential detection (ML-DD), Viterbi-DD, decision feedback differential detection (DF-DD), and DF-DPD, using L-1 past detected symbols, have been proposed. As L increases, the BER performance of DF-DPD improves but the complexity of the architecture increases dramatically. Thus, this paper proposes the simplified DF-DPD architecture, replacing the conventional delay and addition architecture with one accumulator. The proposed architecture also has a good BER performance with minimizing the phase error of the current received symbol using the accumulated phase differences of all DPD. The simulation results show that the BER performance of the proposed architecture approaches that of coherent detection.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An architecture of decision feedback differential phase detection (DF-DPD) of M-ary DPSK signals is proposed. Conventional differential detection of M-ary DPSK signals uses the phase difference between a current symbol and the previous symbol. This method can make the receiver architecture simple. But it has poorer BER performance than coherent detection because it uses the previous noisy signal as the phase reference. To improve the BER performance of conventional differential detection, multiple symbol differential detection methods, such as maximum likelihood differential detection (ML-DD), Viterbi-DD, decision feedback differential detection (DF-DD), and DF-DPD, using L-1 past detected symbols, have been proposed. As L increases, the BER performance of DF-DPD improves but the complexity of the architecture increases dramatically. Thus, this paper proposes the simplified DF-DPD architecture, replacing the conventional delay and addition architecture with one accumulator. The proposed architecture also has a good BER performance with minimizing the phase error of the current received symbol using the accumulated phase differences of all DPD. The simulation results show that the BER performance of the proposed architecture approaches that of coherent detection.
一种m级DPSK信号的判决反馈差分相位检测体系
提出了一种针对m级DPSK信号的决策反馈差分相位检测(DF-DPD)体系结构。传统的m -玛利DPSK信号的差分检测使用当前符号和前一个符号之间的相位差。这种方法可以简化接收机的结构。但由于它是用前一个噪声信号作为相位参考,因此误码率比相干检测差。为了提高传统差分检测的误码率性能,提出了基于L-1过去检测符号的多符号差分检测方法,如最大似然差分检测(ML-DD)、Viterbi-DD、决策反馈差分检测(DF-DD)和DF-DPD。随着L的增大,DF-DPD的误码率性能得到提高,但体系结构的复杂性急剧增加。因此,本文提出了一种简化的DF-DPD体系结构,用一个累加器取代了传统的延迟和加法体系结构。该结构还具有良好的误码率性能,利用所有DPD的累积相位差来最小化当前接收符号的相位误差。仿真结果表明,该结构的误码率性能接近相干检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信