Automated TMA-Core-Detection Algorithm

Lilla Élo, Róbert Paulik, G. Kiszler, T. Micsik, Tamás Székely, H. Hajdú, M. Kozlovszky, B. Molnár
{"title":"Automated TMA-Core-Detection Algorithm","authors":"Lilla Élo, Róbert Paulik, G. Kiszler, T. Micsik, Tamás Székely, H. Hajdú, M. Kozlovszky, B. Molnár","doi":"10.1109/IWOBI47054.2019.9114446","DOIUrl":null,"url":null,"abstract":"Tissue microarray (TMA) is a high-throughput technology for the analysis of molecular markers in oncology. This method supports the presentation of several different tissue samples -TMA cores- in one singe glass slide. However, because of the large size of TMA cores, the “identification and analysis” procedure is a more or less time-consuming method. The TMA core-finding algorithm detailed in this study detects each of the TMA cores on the slide and it creates outline annotation around the cores automatically. A validation study is also presented, through which detection accuracy of this algorithm for detecting cores on brightfield and fluorescent slides have been measured. We have found a 77.5% detection accuracy in average, so based on this result we can conclude that our TMA core detection solution can be utilized as a useful tool for supporting TMA analysis.","PeriodicalId":427695,"journal":{"name":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI47054.2019.9114446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue microarray (TMA) is a high-throughput technology for the analysis of molecular markers in oncology. This method supports the presentation of several different tissue samples -TMA cores- in one singe glass slide. However, because of the large size of TMA cores, the “identification and analysis” procedure is a more or less time-consuming method. The TMA core-finding algorithm detailed in this study detects each of the TMA cores on the slide and it creates outline annotation around the cores automatically. A validation study is also presented, through which detection accuracy of this algorithm for detecting cores on brightfield and fluorescent slides have been measured. We have found a 77.5% detection accuracy in average, so based on this result we can conclude that our TMA core detection solution can be utilized as a useful tool for supporting TMA analysis.
自动tma核心检测算法
组织微阵列(TMA)是一种用于肿瘤分子标记分析的高通量技术。这种方法支持在一个玻片中呈现几种不同的组织样品- tma核心。然而,由于TMA岩芯的尺寸较大,“识别和分析”过程或多或少是一种耗时的方法。本研究中详细介绍的TMA核查找算法检测幻灯片上的每个TMA核,并在核周围自动创建大纲注释。通过验证研究,测量了该算法在明场和荧光载玻片上检测核心的检测精度。我们发现平均检测准确率为77.5%,因此基于此结果我们可以得出结论,我们的TMA核心检测方案可以作为支持TMA分析的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信