Assisted test design for non-intrusive machine learning indirect test of millimeter-wave circuits

F. Cilici, M. Barragán, S. Mir, E. Lauga-Larroze, S. Bourdel
{"title":"Assisted test design for non-intrusive machine learning indirect test of millimeter-wave circuits","authors":"F. Cilici, M. Barragán, S. Mir, E. Lauga-Larroze, S. Bourdel","doi":"10.1109/ETS.2018.8400689","DOIUrl":null,"url":null,"abstract":"The functional test of millimeter-wave (mm-wave) circuitry in the production line is a challenging task that requires costly dedicated test equipment and long test times. Machine learning indirect test offers an appealing alternative to standard mm-wave functional test by replacing the direct measurement of the circuit performances by a set of indirect measurements, usually called signatures. Machine learning regression algorithms are then used to map signatures and performances. In this work, we present a generic and automated methodology for finding an appropriate set of indirect measurements and assisting the designer with the necessary Design-for-Test circuit modifications. In order to avoid complex design modifications of mm-wave circuitry, the proposed strategy is targeted at generating a set of non-intrusive indirect measurements using process variation sensors not connected to the Device Under Test (DUT). The proposed methodology is demonstrated on a 60 GHz Power Amplifier designed in STMicroelectronics 55 nm BiCMOS technology.","PeriodicalId":223459,"journal":{"name":"2018 IEEE 23rd European Test Symposium (ETS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2018.8400689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The functional test of millimeter-wave (mm-wave) circuitry in the production line is a challenging task that requires costly dedicated test equipment and long test times. Machine learning indirect test offers an appealing alternative to standard mm-wave functional test by replacing the direct measurement of the circuit performances by a set of indirect measurements, usually called signatures. Machine learning regression algorithms are then used to map signatures and performances. In this work, we present a generic and automated methodology for finding an appropriate set of indirect measurements and assisting the designer with the necessary Design-for-Test circuit modifications. In order to avoid complex design modifications of mm-wave circuitry, the proposed strategy is targeted at generating a set of non-intrusive indirect measurements using process variation sensors not connected to the Device Under Test (DUT). The proposed methodology is demonstrated on a 60 GHz Power Amplifier designed in STMicroelectronics 55 nm BiCMOS technology.
毫米波电路非侵入式机器学习间接测试辅助测试设计
生产线中毫米波(mm-wave)电路的功能测试是一项具有挑战性的任务,需要昂贵的专用测试设备和较长的测试时间。机器学习间接测试通过一组间接测量(通常称为签名)取代电路性能的直接测量,为标准毫米波功能测试提供了一种有吸引力的替代方案。然后使用机器学习回归算法来映射签名和性能。在这项工作中,我们提出了一种通用的自动化方法,用于寻找一组适当的间接测量,并协助设计人员进行必要的设计测试电路修改。为了避免对毫米波电路进行复杂的设计修改,提出的策略旨在使用未连接到被测设备(DUT)的过程变化传感器生成一组非侵入式间接测量。该方法在采用意法半导体55nm BiCMOS技术设计的60ghz功率放大器上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信