Preliminary tasks of unsupervised speech recognition based on unaligned audio and text data

Zhanibek Kozhirbayev, Talgat Islamgozhayev, Zhandos Yessenbayev, A. Sharipbay
{"title":"Preliminary tasks of unsupervised speech recognition based on unaligned audio and text data","authors":"Zhanibek Kozhirbayev, Talgat Islamgozhayev, Zhandos Yessenbayev, A. Sharipbay","doi":"10.1109/ICEMIS56295.2022.9914249","DOIUrl":null,"url":null,"abstract":"We present herein our work on the preliminary tasks of unsupervised speech recognition using only unaligned audio and text datasets. The motivation for this is the general progress in generative models. Using the assumption that the frequencies and contextual relationships of words are close in audio and text domains for the same language. The experiments on acoustic and test data using the variational autoencoder (VAE) architecture were conducted on word level. Our plan to extract the encoding part of the acoustic VAE and the decoding part of the text VAE to build a joint VAE.","PeriodicalId":191284,"journal":{"name":"2022 International Conference on Engineering & MIS (ICEMIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS56295.2022.9914249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present herein our work on the preliminary tasks of unsupervised speech recognition using only unaligned audio and text datasets. The motivation for this is the general progress in generative models. Using the assumption that the frequencies and contextual relationships of words are close in audio and text domains for the same language. The experiments on acoustic and test data using the variational autoencoder (VAE) architecture were conducted on word level. Our plan to extract the encoding part of the acoustic VAE and the decoding part of the text VAE to build a joint VAE.
基于未对齐音频和文本数据的无监督语音识别的初步任务
我们在此介绍我们的工作在无监督语音识别的初步任务,只使用未对齐的音频和文本数据集。这样做的动机是生成模型的总体进展。假设同一种语言的音频和文本域中单词的频率和上下文关系接近。采用变分自编码器(VAE)结构在词级上对声学数据和测试数据进行了实验。我们计划提取声音VAE的编码部分和文本VAE的解码部分来构建一个联合VAE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信