Recursive algorithm for state space spectrum estimation

W. Edmonson, W. Alexander
{"title":"Recursive algorithm for state space spectrum estimation","authors":"W. Edmonson, W. Alexander","doi":"10.1109/SPECT.1990.205588","DOIUrl":null,"url":null,"abstract":"A new method is proposed for implementing an adaptive state space filter. This method is based upon the matrix minimum principle of optimal control theory. The adaptive state space filter is a two part algorithm. The first part is a recursive algorithm for optimizing a predictor matrix which describes the transformation from past data to future data. A matrix steepest descent algorithm is developed for use as the update equation in optimizing the predictor matrix. The second part determines the system parameters from the optimized predictor matrix by the decomposition of the predictor matrix and the use of projection techniques. The result is the estimation of the innovations realization which can further describe the spectral characteristics of the model.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new method is proposed for implementing an adaptive state space filter. This method is based upon the matrix minimum principle of optimal control theory. The adaptive state space filter is a two part algorithm. The first part is a recursive algorithm for optimizing a predictor matrix which describes the transformation from past data to future data. A matrix steepest descent algorithm is developed for use as the update equation in optimizing the predictor matrix. The second part determines the system parameters from the optimized predictor matrix by the decomposition of the predictor matrix and the use of projection techniques. The result is the estimation of the innovations realization which can further describe the spectral characteristics of the model.<>
状态空间谱估计的递归算法
提出了一种实现自适应状态空间滤波器的新方法。该方法基于最优控制理论中的矩阵最小原理。自适应状态空间滤波算法分为两部分。第一部分是优化预测矩阵的递归算法,该预测矩阵描述了从过去数据到未来数据的转换。提出了一种矩阵最陡下降算法,作为优化预测矩阵的更新方程。第二部分通过对预测矩阵的分解和投影技术,从优化后的预测矩阵中确定系统参数。结果是对创新实现的估计,可以进一步描述模型的光谱特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信