Minimizing Error of Stochastic Computation through Linear Transformation

Yi Wu, Chen Wang, Weikang Qian
{"title":"Minimizing Error of Stochastic Computation through Linear Transformation","authors":"Yi Wu, Chen Wang, Weikang Qian","doi":"10.1145/2742060.2743761","DOIUrl":null,"url":null,"abstract":"Stochastic computation is an unconventional computational paradigm that uses ordinary digital circuits to operate on stochastic bit streams, where signal value is encoded as the probability of ones in a stream. It is highly tolerant of soft errors and enables complex arithmetic operations to be implemented with simple circuitry. Prior research has proposed a method to synthesize stochastic computing circuits to implement arbitrary arithmetic functions by approximating them via Bernstein polynomials. However, for some functions, the method cannot find Bernstein polynomials that approximate them closely enough, thus causing a large computation error. In this work, we explore linear transformation on a target function to reduce the approximation error. We propose a method to find the optimal linear transformation parameters to minimize the overall error of the stochastic implementation. Experimental results demonstrated the effectiveness of our method in reducing the computation error and the circuit area.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2743761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Stochastic computation is an unconventional computational paradigm that uses ordinary digital circuits to operate on stochastic bit streams, where signal value is encoded as the probability of ones in a stream. It is highly tolerant of soft errors and enables complex arithmetic operations to be implemented with simple circuitry. Prior research has proposed a method to synthesize stochastic computing circuits to implement arbitrary arithmetic functions by approximating them via Bernstein polynomials. However, for some functions, the method cannot find Bernstein polynomials that approximate them closely enough, thus causing a large computation error. In this work, we explore linear transformation on a target function to reduce the approximation error. We propose a method to find the optimal linear transformation parameters to minimize the overall error of the stochastic implementation. Experimental results demonstrated the effectiveness of our method in reducing the computation error and the circuit area.
用线性变换最小化随机计算误差
随机计算是一种非常规的计算范式,它使用普通数字电路对随机比特流进行操作,其中信号值被编码为流中1的概率。它对软错误有很高的容忍度,可以用简单的电路实现复杂的算术运算。已有研究提出了一种利用Bernstein多项式逼近任意算术函数来合成随机计算电路的方法。然而,对于某些函数,该方法无法找到与它们足够接近的Bernstein多项式,从而导致较大的计算误差。在这项工作中,我们探索对目标函数进行线性变换以减少近似误差。我们提出了一种寻找最优线性变换参数的方法,以最小化随机实现的总体误差。实验结果表明,该方法在减小计算误差和电路面积方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信