Physical layer assisted security for mobile OFDM networks

Fangming He, H. Man, Wei Wang
{"title":"Physical layer assisted security for mobile OFDM networks","authors":"Fangming He, H. Man, Wei Wang","doi":"10.1109/VNC.2010.5698262","DOIUrl":null,"url":null,"abstract":"Secure wireless communication is a challenging problem due to the shared nature of the wireless medium and the dynamic channel. Most of the existing security mechanisms focus on traditional cryptographic schemes. In recent years, features of multi-path channels, such as randomness, coherence and reciprocity, have driven researchers to exploit their potential to enhance the security of mobile wireless networks. As OFDM occupies wide bandwidth, it will experience a prolific source of multi-path components. In this paper, we comprehensively exploit the inherent physical features of the multi-path fading channel to achieve continuous two way authentication between mobile terminals. In our scheme, the coherence of the time-variant channel for the continuous symbols is exploited to achieve authentication of the OFDM communication networks. Unlike other channel-based approaches, the coherence of both amplitude and phase of the channel signature in the continuous symbol is utilized to enhance the security of the OFDM communication network. More specifically, the receiver will detect the channel response continuously according to the inserted pilots and identify the legal user based on the statistical channel signature information. Simulation results indicate the high efficiency of our proposed method.","PeriodicalId":257339,"journal":{"name":"2010 IEEE Vehicular Networking Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Vehicular Networking Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2010.5698262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Secure wireless communication is a challenging problem due to the shared nature of the wireless medium and the dynamic channel. Most of the existing security mechanisms focus on traditional cryptographic schemes. In recent years, features of multi-path channels, such as randomness, coherence and reciprocity, have driven researchers to exploit their potential to enhance the security of mobile wireless networks. As OFDM occupies wide bandwidth, it will experience a prolific source of multi-path components. In this paper, we comprehensively exploit the inherent physical features of the multi-path fading channel to achieve continuous two way authentication between mobile terminals. In our scheme, the coherence of the time-variant channel for the continuous symbols is exploited to achieve authentication of the OFDM communication networks. Unlike other channel-based approaches, the coherence of both amplitude and phase of the channel signature in the continuous symbol is utilized to enhance the security of the OFDM communication network. More specifically, the receiver will detect the channel response continuously according to the inserted pilots and identify the legal user based on the statistical channel signature information. Simulation results indicate the high efficiency of our proposed method.
移动OFDM网络的物理层辅助安全
由于无线介质和动态信道的共享特性,安全无线通信是一个具有挑战性的问题。现有的安全机制大多集中在传统的加密方案上。近年来,多径信道的随机性、相干性和互易性等特性促使研究人员不断挖掘其潜力,以提高移动无线网络的安全性。由于OFDM占用的带宽较宽,它将拥有丰富的多径组件来源。本文综合利用多径衰落信道固有的物理特性,实现移动终端间的连续双向认证。在我们的方案中,利用时变信道对连续符号的相干性来实现OFDM通信网络的认证。与其他基于信道的方法不同,利用连续符号中信道特征的幅度和相位的相干性来提高OFDM通信网络的安全性。更具体地说,接收器将根据插入的导频连续检测信道响应,并根据信道统计签名信息识别合法用户。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信