Cascade multi-scale object detection on high-resolution images

A. Novoselov, O. Dyakov, I. Kostromin, D. Pogibelskiy
{"title":"Cascade multi-scale object detection on high-resolution images","authors":"A. Novoselov, O. Dyakov, I. Kostromin, D. Pogibelskiy","doi":"10.1109/EnT47717.2019.9030548","DOIUrl":null,"url":null,"abstract":"Precise object detection is one of important task in computer vision. Recent achievements in convolutional neural networks open possibilities to detect objects with precision close to humans. However, current neural networks struggles to detect objects with large difference in scale. In this report proposed approach to process high-resolution images by same neural network multiple times with decreasing resolution in cascade way to enhance scale range of network pre-trained on typical dataset. Combined result of object detection of all passes processed by non-maximal suppression algorithm. Proposed approach demonstrated on Yolo3 network trained on COCO dataset. Scale range of network and upper size limit for detected object are estimated, scale technique for cascade decreasing resolution proposed.","PeriodicalId":288550,"journal":{"name":"2019 International Conference on Engineering and Telecommunication (EnT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT47717.2019.9030548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precise object detection is one of important task in computer vision. Recent achievements in convolutional neural networks open possibilities to detect objects with precision close to humans. However, current neural networks struggles to detect objects with large difference in scale. In this report proposed approach to process high-resolution images by same neural network multiple times with decreasing resolution in cascade way to enhance scale range of network pre-trained on typical dataset. Combined result of object detection of all passes processed by non-maximal suppression algorithm. Proposed approach demonstrated on Yolo3 network trained on COCO dataset. Scale range of network and upper size limit for detected object are estimated, scale technique for cascade decreasing resolution proposed.
高分辨率图像的级联多尺度目标检测
精确目标检测是计算机视觉中的重要任务之一。卷积神经网络的最新成就开启了以接近人类的精度检测物体的可能性。然而,目前的神经网络很难检测到尺度差异很大的物体。本文提出了用同一神经网络对高分辨率图像进行多次逐级递减处理的方法,以增强典型数据集上预训练网络的尺度范围。非极大抑制算法处理的所有通道的目标检测组合结果。该方法在COCO数据集上训练的Yolo3网络上进行了验证。估计了网络的尺度范围和被检测目标的尺度上限,提出了级联降低分辨率的尺度技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信