Adaptive Filtering for Mobile Robot Localization with Unknown Odometry Statistics

R. Caballero, D. Rodríguez-Losada, F. Matía
{"title":"Adaptive Filtering for Mobile Robot Localization with Unknown Odometry Statistics","authors":"R. Caballero, D. Rodríguez-Losada, F. Matía","doi":"10.1109/CONIELECOMP.2009.53","DOIUrl":null,"url":null,"abstract":"One of the most important tasks in mobile robotics is the vehicle self localization from a reference frame system. In this sense, most of the mobile robots fuse odometry sensors with laser range finders or sonar sensors. Nevertheless, the odometry and kinematic model error statistics are usually unknown and time variant. An Adaptive Extended Kalman Filter is proposed for Mobile Robot Localization and the first and second moment of odometry sensors noise estimation.","PeriodicalId":292855,"journal":{"name":"2009 International Conference on Electrical, Communications, and Computers","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Electrical, Communications, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the most important tasks in mobile robotics is the vehicle self localization from a reference frame system. In this sense, most of the mobile robots fuse odometry sensors with laser range finders or sonar sensors. Nevertheless, the odometry and kinematic model error statistics are usually unknown and time variant. An Adaptive Extended Kalman Filter is proposed for Mobile Robot Localization and the first and second moment of odometry sensors noise estimation.
基于未知里程统计量的移动机器人定位自适应滤波
基于参照系系统的车辆自定位是移动机器人研究的重要课题之一。从这个意义上讲,大多数移动机器人将里程计传感器与激光测距仪或声纳传感器融合在一起。然而,里程计和运动模型误差统计通常是未知的和时变的。提出了一种自适应扩展卡尔曼滤波器,用于移动机器人定位和里程计传感器一、二矩噪声估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信