Map-based Adaptive Positioning in Wireless Sensor Networks

A.A. Ahmed, Hongchi Shi, Yi Shang
{"title":"Map-based Adaptive Positioning in Wireless Sensor Networks","authors":"A.A. Ahmed, Hongchi Shi, Yi Shang","doi":"10.1109/ISWPC.2007.342580","DOIUrl":null,"url":null,"abstract":"Frequent localization in sensor networks may be needed due to the dynamically changing topology and the possible mobility of sensor nodes. We present a distributed adaptive localization method that we refer to as: map-based adaptive positioning (MAP). The main idea is to construct a relative local map at every node in the network, consisting of the node itself and its immediate neighbors, and merge the local maps together to form a global map. We consider two algorithms that can be used to estimate the relative local maps: multidimensional scaling (MDS) and semidefinite programming (SDP). The performance of these algorithms depend on two parameters: size of a local map, i.e., number of nodes, and the average connectivity of the node at the center of the local map and its 1-hop neighbors. We use machine learning to adaptively select the appropriate algorithm to estimate the relative local maps. Simulation results show that MAP outperforms both MDS and SDP, with better improvement for networks with less uniform node deployment.","PeriodicalId":403213,"journal":{"name":"2007 2nd International Symposium on Wireless Pervasive Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Symposium on Wireless Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWPC.2007.342580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Frequent localization in sensor networks may be needed due to the dynamically changing topology and the possible mobility of sensor nodes. We present a distributed adaptive localization method that we refer to as: map-based adaptive positioning (MAP). The main idea is to construct a relative local map at every node in the network, consisting of the node itself and its immediate neighbors, and merge the local maps together to form a global map. We consider two algorithms that can be used to estimate the relative local maps: multidimensional scaling (MDS) and semidefinite programming (SDP). The performance of these algorithms depend on two parameters: size of a local map, i.e., number of nodes, and the average connectivity of the node at the center of the local map and its 1-hop neighbors. We use machine learning to adaptively select the appropriate algorithm to estimate the relative local maps. Simulation results show that MAP outperforms both MDS and SDP, with better improvement for networks with less uniform node deployment.
无线传感器网络中基于地图的自适应定位
在传感器网络中,由于拓扑结构的动态变化和传感器节点可能的移动性,可能需要频繁的定位。我们提出了一种分布式自适应定位方法,我们称之为:基于地图的自适应定位(MAP)。其主要思想是在网络中的每个节点上构建一个相对的局部地图,由节点本身和它的近邻组成,并将局部地图合并在一起形成一个全局地图。我们考虑了两种可用于估计相对局部映射的算法:多维尺度(MDS)和半确定规划(SDP)。这些算法的性能取决于两个参数:本地地图的大小,即节点的数量,以及本地地图中心节点与其1跳邻居的平均连通性。我们使用机器学习自适应地选择合适的算法来估计相对的局部地图。仿真结果表明,MAP算法优于MDS算法和SDP算法,在节点部署不均匀的网络中有更好的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信