Power profiling-guided floorplanner for 3D multi-processor systems-on-chip

Ignacio Arnaldo, J. L. Risco-Martín, J. Ayala, J. Hidalgo
{"title":"Power profiling-guided floorplanner for 3D multi-processor systems-on-chip","authors":"Ignacio Arnaldo, J. L. Risco-Martín, J. Ayala, J. Hidalgo","doi":"10.1049/IET-CDS.2011.0350","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) integration has become one of the most promising techniques for the development of future multi-core processors, since it improves performance and reduces power consumption by decreasing global wire length. However, 3D integration causes serious thermal problems because the closer proximity of heat generating dies makes existing thermal hotspots more severe. Thermal-aware floorplanners can play an important role to improve the thermal profile, but they have failed in considering the dynamic power profiles of the applications. This study proposes a novel thermal-aware floorplanner guided by the power profiling of a set of benchmarks that are representative of the application scope. The results show how our approach outperforms the thermal metrics as compared with the worst-case scenario usually considered in ‘traditional’ thermal-aware floorplanners.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-CDS.2011.0350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) integration has become one of the most promising techniques for the development of future multi-core processors, since it improves performance and reduces power consumption by decreasing global wire length. However, 3D integration causes serious thermal problems because the closer proximity of heat generating dies makes existing thermal hotspots more severe. Thermal-aware floorplanners can play an important role to improve the thermal profile, but they have failed in considering the dynamic power profiles of the applications. This study proposes a novel thermal-aware floorplanner guided by the power profiling of a set of benchmarks that are representative of the application scope. The results show how our approach outperforms the thermal metrics as compared with the worst-case scenario usually considered in ‘traditional’ thermal-aware floorplanners.
用于3D多处理器片上系统的功耗分析引导地板规划器
三维(3D)集成已成为未来多核处理器开发中最有前途的技术之一,因为它可以通过减少全局导线长度来提高性能并降低功耗。然而,由于产热模具的距离更近,使得现有的热热点更加严重,因此3D集成会导致严重的热问题。热意识地板规划师可以在改善热剖面方面发挥重要作用,但他们未能考虑到应用的动态功率剖面。本研究提出了一种新的热感知地板规划器,由一组代表应用范围的基准的功率分析指导。结果表明,与“传统”热意识地板规划师通常考虑的最坏情况相比,我们的方法如何优于热指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信