Digital spiking neuron cells for real-time reconfigurable learning networks

Haipeng Lin, A. Zjajo, R. V. Leuken
{"title":"Digital spiking neuron cells for real-time reconfigurable learning networks","authors":"Haipeng Lin, A. Zjajo, R. V. Leuken","doi":"10.1109/SOCC.2017.8226029","DOIUrl":null,"url":null,"abstract":"The high level of realism of spiking neuron networks and their complexity require a substantial computational resources limiting the size of the realized networks. Consequently, the main challenge in building complex and biologically-accurate spiking neuron network is largely set by the high computational and data transfer demands. In this paper, we implement several efficient models of the spiking neurons with characteristics such as axon conduction delays and spike timing-dependent plasticity. Experimental results indicate that the proposed real-time data-flow learning network architecture allows the capacity of over 2800 (depending on the model complexity) biophysically accurate neurons in a single FPGA device.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high level of realism of spiking neuron networks and their complexity require a substantial computational resources limiting the size of the realized networks. Consequently, the main challenge in building complex and biologically-accurate spiking neuron network is largely set by the high computational and data transfer demands. In this paper, we implement several efficient models of the spiking neurons with characteristics such as axon conduction delays and spike timing-dependent plasticity. Experimental results indicate that the proposed real-time data-flow learning network architecture allows the capacity of over 2800 (depending on the model complexity) biophysically accurate neurons in a single FPGA device.
用于实时可重构学习网络的数字脉冲神经元细胞
尖峰神经元网络的高真实感及其复杂性需要大量的计算资源,限制了所实现网络的大小。因此,构建复杂和生物精确的脉冲神经元网络的主要挑战主要是高计算和数据传输需求。在本文中,我们实现了几种具有轴突传导延迟和脉冲时间依赖可塑性等特征的脉冲神经元的有效模型。实验结果表明,所提出的实时数据流学习网络架构允许在单个FPGA器件中容纳超过2800个(取决于模型复杂度)生物物理精确神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信