Characterizing the Anchoring Effects of Official Forecasts on Private Expectations

Carlos R. BARRERA CHAUPIS
{"title":"Characterizing the Anchoring Effects of Official Forecasts on Private Expectations","authors":"Carlos R. BARRERA CHAUPIS","doi":"10.14505/tpref.v14.1(27).11","DOIUrl":null,"url":null,"abstract":"The paper proposes a method for simultaneously estimating the treatment effects of a change in a policy variable on a numerable set of interrelated outcome variables (different moments from the same probability density function). Firstly, it defines a non-Gaussian probability density function as the outcome variable. Secondly, it uses a functional regression to explain the density in terms of a set of scalar variables. From both the observed and the fitted probability density functions, two sets of interrelated moments are then obtained by simulation. Finally, a set of difference-in-difference estimators can be defined from the available pairs of moments in the sample. A stylized application provides a 29-moment characterization of the direct treatment effects of the Peruvian Central Bank’s forecasts on two sequences of Peruvian firms’ probability densities of expectations (for inflation -π- and real growth -g-) during 2004-2015.","PeriodicalId":362173,"journal":{"name":"Theoretical and Practical Research in the Economic Fields","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Practical Research in the Economic Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14505/tpref.v14.1(27).11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a method for simultaneously estimating the treatment effects of a change in a policy variable on a numerable set of interrelated outcome variables (different moments from the same probability density function). Firstly, it defines a non-Gaussian probability density function as the outcome variable. Secondly, it uses a functional regression to explain the density in terms of a set of scalar variables. From both the observed and the fitted probability density functions, two sets of interrelated moments are then obtained by simulation. Finally, a set of difference-in-difference estimators can be defined from the available pairs of moments in the sample. A stylized application provides a 29-moment characterization of the direct treatment effects of the Peruvian Central Bank’s forecasts on two sequences of Peruvian firms’ probability densities of expectations (for inflation -π- and real growth -g-) during 2004-2015.
官方预测对个人预期的锚定效应表征
本文提出了一种方法,可以同时估计政策变量的变化对一组相互关联的结果变量(来自同一概率密度函数的不同时刻)的处理效果。首先,定义非高斯概率密度函数作为结果变量。其次,它使用函数回归来解释密度在一组标量变量方面。从观测到的概率密度函数和拟合的概率密度函数中,通过模拟得到两组相互关联的矩。最后,从样本中可用的矩对定义一组差中差估计量。一个程式化的应用程序提供了2004-2015年期间秘鲁中央银行对秘鲁公司预期概率密度(通货膨胀-π-和实际增长-g-)的两个序列的预测的直接处理效果的29时刻特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信