{"title":"Radar absorbing structures using carbon nano-composites: EM design and performance analysis","authors":"Manmohan C.T., R. U. Nair, Hema Singh","doi":"10.1109/APMC.2016.7931404","DOIUrl":null,"url":null,"abstract":"Low observability can be achieved by increasing absorption along with decreasing reflection and transmission. Most of the devices are made up of conducting materials which has high reflection characteristics. Radar absorbing structure (RAS) over such metallic objects can reduce the radar cross section (RCS) effectively. In this paper, carbon nano-composite is used in RAS design to achieve improved electromagnetic (EM) absorption over wide frequency range with optimum thickness. The results obtained through computations and full wave simulations are shown to be in good agreement. It is demonstrated that an optimized design and proper choice of material can provide an efficient RAS with minimum bulkiness.","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Low observability can be achieved by increasing absorption along with decreasing reflection and transmission. Most of the devices are made up of conducting materials which has high reflection characteristics. Radar absorbing structure (RAS) over such metallic objects can reduce the radar cross section (RCS) effectively. In this paper, carbon nano-composite is used in RAS design to achieve improved electromagnetic (EM) absorption over wide frequency range with optimum thickness. The results obtained through computations and full wave simulations are shown to be in good agreement. It is demonstrated that an optimized design and proper choice of material can provide an efficient RAS with minimum bulkiness.