Kien Le, R. Bianchini, Thu D. Nguyen, Ozlem Bilgir, M. Martonosi
{"title":"Capping the brown energy consumption of Internet services at low cost","authors":"Kien Le, R. Bianchini, Thu D. Nguyen, Ozlem Bilgir, M. Martonosi","doi":"10.1109/GREENCOMP.2010.5598305","DOIUrl":null,"url":null,"abstract":"The large amount of energy consumed by Internet services represents significant and fast-growing financial and environmental costs. Increasingly, services are exploring dynamic methods to minimize energy costs while respecting their service-level agreements (SLAs). Furthermore, it will soon be important for these services to manage their usage of “brown energy” (produced via carbon-intensive means) relative to renewable or “green” energy. This paper introduces a general, optimization-based framework for enabling multi-data-center services to manage their brown energy consumption and leverage green energy, while respecting their SLAs and minimizing energy costs. Based on the framework, we propose a policy for request distribution across the data centers. Our policy can be used to abide by caps on brown energy consumption, such as those that might arise from Kyoto-style carbon limits, from corporate pledges on carbon-neutrality, or from limits imposed on services to encourage brown energy conservation. We evaluate our framework and policy extensively through simulations and real experiments. Our results show how our policy allows a service to trade off consumption and cost. For example, using our policy, the service can reduce brown energy consumption by 24% for only a 10% increase in cost, while still abiding by SLAs.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181
Abstract
The large amount of energy consumed by Internet services represents significant and fast-growing financial and environmental costs. Increasingly, services are exploring dynamic methods to minimize energy costs while respecting their service-level agreements (SLAs). Furthermore, it will soon be important for these services to manage their usage of “brown energy” (produced via carbon-intensive means) relative to renewable or “green” energy. This paper introduces a general, optimization-based framework for enabling multi-data-center services to manage their brown energy consumption and leverage green energy, while respecting their SLAs and minimizing energy costs. Based on the framework, we propose a policy for request distribution across the data centers. Our policy can be used to abide by caps on brown energy consumption, such as those that might arise from Kyoto-style carbon limits, from corporate pledges on carbon-neutrality, or from limits imposed on services to encourage brown energy conservation. We evaluate our framework and policy extensively through simulations and real experiments. Our results show how our policy allows a service to trade off consumption and cost. For example, using our policy, the service can reduce brown energy consumption by 24% for only a 10% increase in cost, while still abiding by SLAs.