Fitness estimations for evolutionary antenna design

L. Zinchenko, S. Sorokin
{"title":"Fitness estimations for evolutionary antenna design","authors":"L. Zinchenko, S. Sorokin","doi":"10.1109/EH.2003.1217661","DOIUrl":null,"url":null,"abstract":"Evolutionary design is effective for many applications. However, a choice of the fitness function is often intuitive. In this paper, an effective approach for a comparison of fitness function properties, which uses an estimation of fitness function landscape ruggedness, is described. Penalty coefficients define the importance of each parameter for design goal and change the difficulty of the fitness function landscape significantly. A reasonable choice of objectives and penalty coefficients allows us to reduce the computational efforts because of the smoother landscape of the fitness functions. The effectiveness of the approach is illustrated for fitness functions that are used for evolutionary antenna design.","PeriodicalId":134823,"journal":{"name":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2003.1217661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evolutionary design is effective for many applications. However, a choice of the fitness function is often intuitive. In this paper, an effective approach for a comparison of fitness function properties, which uses an estimation of fitness function landscape ruggedness, is described. Penalty coefficients define the importance of each parameter for design goal and change the difficulty of the fitness function landscape significantly. A reasonable choice of objectives and penalty coefficients allows us to reduce the computational efforts because of the smoother landscape of the fitness functions. The effectiveness of the approach is illustrated for fitness functions that are used for evolutionary antenna design.
进化天线设计的适应度估计
进化设计对许多应用都是有效的。然而,适应度函数的选择通常是直观的。本文描述了一种比较适应度函数属性的有效方法,即使用适应度函数景观坚固度的估计。惩罚系数定义了各参数对设计目标的重要性,显著地改变了适应度函数景观的难度。目标和惩罚系数的合理选择使我们能够减少计算工作量,因为适应度函数的景观更平滑。对于进化天线设计中使用的适应度函数,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信