Parameter Study and Optimization of a Color-Based Object Classification System

Vinh Hong, D. Paulus
{"title":"Parameter Study and Optimization of a Color-Based Object Classification System","authors":"Vinh Hong, D. Paulus","doi":"10.1109/SoCPaR.2009.19","DOIUrl":null,"url":null,"abstract":"Typical computer vision systems usually include a set of components such as a preprocessor, a feature extractor, and a classifier that together represent an image processing pipeline. For each component there are different operators available. Each operator has a different number of parameters with individual parameter domains. The challenge in developing a computer vision system is the optimal choice of the available operators and their parameters to construct the appropriate pipeline for the problem at hand. The task of finding the optimal combination and setting depends strongly on the definition of the term optimal. Optimality can reach from minimal computational time to maximal recognition rate of a system. Using the example of the color-based object classification system, this contribution presents a comprehensive approach for finding an optimal system by defining the required image processing pipeline, defining the optimization problem for the classification and improving the optimization by taking parameter studies into consideration. This unique approach produces a color-based classification system with an illuminant independent structure.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Typical computer vision systems usually include a set of components such as a preprocessor, a feature extractor, and a classifier that together represent an image processing pipeline. For each component there are different operators available. Each operator has a different number of parameters with individual parameter domains. The challenge in developing a computer vision system is the optimal choice of the available operators and their parameters to construct the appropriate pipeline for the problem at hand. The task of finding the optimal combination and setting depends strongly on the definition of the term optimal. Optimality can reach from minimal computational time to maximal recognition rate of a system. Using the example of the color-based object classification system, this contribution presents a comprehensive approach for finding an optimal system by defining the required image processing pipeline, defining the optimization problem for the classification and improving the optimization by taking parameter studies into consideration. This unique approach produces a color-based classification system with an illuminant independent structure.
基于颜色的目标分类系统参数研究与优化
典型的计算机视觉系统通常包括一组组件,如预处理器、特征提取器和分类器,它们共同代表了一个图像处理管道。对于每个组件都有不同的操作符可用。每个操作符具有不同数量的参数和单独的参数域。开发计算机视觉系统所面临的挑战是对可用操作器及其参数进行最佳选择,以构建适合当前问题的管道。寻找最优组合和设置的任务在很大程度上取决于术语“最优”的定义。系统的最优性可以达到从最小的计算时间到最大的识别率。本文以基于颜色的目标分类系统为例,通过定义所需的图像处理管道、定义分类的优化问题以及考虑参数研究来改进优化,提出了一种寻找最优系统的综合方法。这种独特的方法产生了一个独立于光源结构的基于颜色的分类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信