Scalable l-Diversity: An Extension to Scalable k-Anonymity for Privacy Preserving Big Data Publishing

U. P. Rao, Brijesh B. Mehta, Nikhil Kumar
{"title":"Scalable l-Diversity: An Extension to Scalable k-Anonymity for Privacy Preserving Big Data Publishing","authors":"U. P. Rao, Brijesh B. Mehta, Nikhil Kumar","doi":"10.4018/IJITWE.2019040102","DOIUrl":null,"url":null,"abstract":"Privacy preserving data publishing is one of the most demanding research areas in the recent few years. There are more than billions of devices capable to collect the data from various sources. To preserve the privacy while publishing data, algorithms for equivalence class generation and scalable anonymization with k-anonymity and l-diversity using MapReduce programming paradigm are proposed in this article. Equivalence class generation algorithms divide the datasets into equivalence classes for Scalable k-Anonymity (SKA) and Scalable l-Diversity (SLD) separately. These equivalence classes are finally fed to the anonymization algorithm that calculates the Gross Cost Penalty (GCP) for the complete dataset. The value of GCP gives information loss in input dataset after anonymization.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2019040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Privacy preserving data publishing is one of the most demanding research areas in the recent few years. There are more than billions of devices capable to collect the data from various sources. To preserve the privacy while publishing data, algorithms for equivalence class generation and scalable anonymization with k-anonymity and l-diversity using MapReduce programming paradigm are proposed in this article. Equivalence class generation algorithms divide the datasets into equivalence classes for Scalable k-Anonymity (SKA) and Scalable l-Diversity (SLD) separately. These equivalence classes are finally fed to the anonymization algorithm that calculates the Gross Cost Penalty (GCP) for the complete dataset. The value of GCP gives information loss in input dataset after anonymization.
可扩展的l-多样性:可扩展的k-匿名在隐私保护大数据发布中的扩展
保护隐私的数据发布是近年来最热门的研究领域之一。有超过数十亿的设备能够从各种来源收集数据。为了在发布数据时保护隐私,本文提出了基于MapReduce编程范式的等价类生成和基于k-匿名和l-多样性的可扩展匿名化算法。等价类生成算法将数据集分别划分为可伸缩k-匿名(SKA)和可伸缩l-多样性(SLD)的等价类。这些等价类最终被提供给匿名化算法,该算法计算完整数据集的总成本惩罚(GCP)。GCP值给出了匿名化后输入数据集的信息损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信