{"title":"A Polymorphic Circuit Interoperability Framework","authors":"Timothy Dunlap, G. Qu, Jinmei Lai","doi":"10.1109/ASICON47005.2019.8983594","DOIUrl":null,"url":null,"abstract":"The Polymorphic Circuit Interoperability Framework is presented in this paper. This framework separates the polymorphic component (called the polymorphic element) from the functional gates (called the switchable gate). The requirement of the framework is that the polymorphic element outputs a non-empty set of signals that change based on the polymorphic effect desired. In this paper, single output polymorphic elements based on voltage and clock speed are shown, and a polymorphic element based on temperature is theoretically adapted from existing literature [5]. A switchable gate that implements NAND/NOR functionality is shown and used with these polymorphic elements to test the framework for polymorphic functionality. The results are presented and polymorphic functionality is successfully demonstrated.","PeriodicalId":319342,"journal":{"name":"2019 IEEE 13th International Conference on ASIC (ASICON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON47005.2019.8983594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Polymorphic Circuit Interoperability Framework is presented in this paper. This framework separates the polymorphic component (called the polymorphic element) from the functional gates (called the switchable gate). The requirement of the framework is that the polymorphic element outputs a non-empty set of signals that change based on the polymorphic effect desired. In this paper, single output polymorphic elements based on voltage and clock speed are shown, and a polymorphic element based on temperature is theoretically adapted from existing literature [5]. A switchable gate that implements NAND/NOR functionality is shown and used with these polymorphic elements to test the framework for polymorphic functionality. The results are presented and polymorphic functionality is successfully demonstrated.