Multivariate statistical modeling for stereo image retrieval

Amani Chaker, M. Kaaniche, A. Benazza-Benyahia
{"title":"Multivariate statistical modeling for stereo image retrieval","authors":"Amani Chaker, M. Kaaniche, A. Benazza-Benyahia","doi":"10.1109/EUVIP.2014.7018387","DOIUrl":null,"url":null,"abstract":"Ongoing developments in stereoscopic display technologies have led to the proliferation of huge stereo image databases. Therefore, the design of an appropriate Content Based Image Retrieval (CBIR) system for stereo images is an important emerging issue. In this paper, we propose a novel retrieval method which exploits simultaneously the spatial and cross-view dependencies of the stereo images. Within each subband, the joint distribution of the resulting wavelet coefficients of the two views located at the same spatial position as well as those of the neighboring pixels, is modeled by a multivariate statistical model based on Spherically Invariant Random Vectors (SIRV). The parameters of the SIRV model are selected as relevant signatures of the stereo pair. Experimental results show the benefits which can be drawn from the proposed retrieval approach.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ongoing developments in stereoscopic display technologies have led to the proliferation of huge stereo image databases. Therefore, the design of an appropriate Content Based Image Retrieval (CBIR) system for stereo images is an important emerging issue. In this paper, we propose a novel retrieval method which exploits simultaneously the spatial and cross-view dependencies of the stereo images. Within each subband, the joint distribution of the resulting wavelet coefficients of the two views located at the same spatial position as well as those of the neighboring pixels, is modeled by a multivariate statistical model based on Spherically Invariant Random Vectors (SIRV). The parameters of the SIRV model are selected as relevant signatures of the stereo pair. Experimental results show the benefits which can be drawn from the proposed retrieval approach.
立体图像检索的多元统计建模
立体显示技术的不断发展导致了大量立体图像数据库的激增。因此,设计一个合适的基于内容的立体图像检索系统(CBIR)是一个重要的新兴问题。在本文中,我们提出了一种新的检索方法,该方法同时利用了立体图像的空间依赖性和交叉视依赖性。在每个子带内,利用基于球不变随机向量(Spherically Invariant Random Vectors, SIRV)的多元统计模型,对同一空间位置的两个视图及其相邻像素的小波系数联合分布进行建模。选取SIRV模型的参数作为立体对的相关特征。实验结果表明,该方法具有较好的检索效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信