Multiple Waypoint Path Planning for a Mobile Robot using Genetic Algorithms

T. Davies, A. Jnifene
{"title":"Multiple Waypoint Path Planning for a Mobile Robot using Genetic Algorithms","authors":"T. Davies, A. Jnifene","doi":"10.1109/CIMSA.2006.250741","DOIUrl":null,"url":null,"abstract":"This investigation developed a MATLAB program, based on genetic algorithms that generated an optimal (shortest distance) path plan for a mobile robot to visit all of the specified waypoints without colliding with the known obstacles. The designed genetic algorithm path planner was shown to accomplish this task and produce superior results when compared against a full search path planner. Next, it was shown that the choice of search parameters for the genetic algorithm effected the time to execute the search and the quality of the solution (length of the chosen path). Having proven the genetic algorithm path planner in simulation, the genetic algorithm path planner then successfully guided an actual X80 mobile robot to all its waypoints without colliding with any obstacles in a test environment","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This investigation developed a MATLAB program, based on genetic algorithms that generated an optimal (shortest distance) path plan for a mobile robot to visit all of the specified waypoints without colliding with the known obstacles. The designed genetic algorithm path planner was shown to accomplish this task and produce superior results when compared against a full search path planner. Next, it was shown that the choice of search parameters for the genetic algorithm effected the time to execute the search and the quality of the solution (length of the chosen path). Having proven the genetic algorithm path planner in simulation, the genetic algorithm path planner then successfully guided an actual X80 mobile robot to all its waypoints without colliding with any obstacles in a test environment
基于遗传算法的移动机器人多路径规划
本研究开发了一个基于遗传算法的MATLAB程序,该程序生成了移动机器人访问所有指定路径点而不与已知障碍物发生碰撞的最优(最短距离)路径计划。与全搜索路径规划器相比,所设计的遗传算法路径规划器完成了这一任务,并产生了更好的结果。其次,研究表明,遗传算法的搜索参数的选择影响了执行搜索的时间和解的质量(所选路径的长度)。通过对遗传算法路径规划器的仿真验证,遗传算法路径规划器在测试环境中成功地引导实际的X80移动机器人到达所有路径点,并且没有与任何障碍物发生碰撞
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信