{"title":"A non-linear variational principle for the self-consistent solution of Poisson's equation and a transport equation in the local density approximation","authors":"H. Carrillo-Nuñez, W. Magnus, F. Peeters","doi":"10.1109/SISPAD.2010.5604537","DOIUrl":null,"url":null,"abstract":"In order to simplify the numerical investigation of carrier transport in nanodevices without jeopardizing the rigor of a full quantum mechanical treatment, we have exploited an existing variational principle to solve self-consistently Poisson's equation and Schrödinger's equation as well as an appropriate transport equation within the scope of the generalized local density approximation (GLDA). In this work, as a benchmark, we have applied our approach to compute the ballistic current density and electron concentration in a Si nanowire.","PeriodicalId":331098,"journal":{"name":"2010 International Conference on Simulation of Semiconductor Processes and Devices","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2010.5604537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to simplify the numerical investigation of carrier transport in nanodevices without jeopardizing the rigor of a full quantum mechanical treatment, we have exploited an existing variational principle to solve self-consistently Poisson's equation and Schrödinger's equation as well as an appropriate transport equation within the scope of the generalized local density approximation (GLDA). In this work, as a benchmark, we have applied our approach to compute the ballistic current density and electron concentration in a Si nanowire.