A novel robot hand with the magneto-rheological fluid solidification

Qingyun Liu, Tiantian Jing, An Mo, Xiangrong Xu, Wenzeng Zhang
{"title":"A novel robot hand with the magneto-rheological fluid solidification","authors":"Qingyun Liu, Tiantian Jing, An Mo, Xiangrong Xu, Wenzeng Zhang","doi":"10.1109/ROBIO.2015.7419714","DOIUrl":null,"url":null,"abstract":"The conventional passively underactuated hand can self-adaptively grasp an object under the reaction force produced by other active joints or the grasped objects, but it may reject the object if the force disappears, and cannot grasp independently. In order to overcome this serious disadvantage, a novel kind design of the passively self-adaptive underactuated hand is proposed, called the magneto-rheological fluid (MRF) hand. The MRF can be instantaneously solidified while a fitful magnetic field being produced, and liquidized shortly after the magnetic field disappearing. Based on this characteristic, the MRF is applied to a self-adaptive hand which can solidify the shape of the joint grasping the object and keep the grasping force under the help of springs. The MRF Hand is actuated initially by the reaction force from the grasped object and locked by the solidified MRF ultimately. The MRF Hand can keep the shape of the grasping object securely during the grasping process.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The conventional passively underactuated hand can self-adaptively grasp an object under the reaction force produced by other active joints or the grasped objects, but it may reject the object if the force disappears, and cannot grasp independently. In order to overcome this serious disadvantage, a novel kind design of the passively self-adaptive underactuated hand is proposed, called the magneto-rheological fluid (MRF) hand. The MRF can be instantaneously solidified while a fitful magnetic field being produced, and liquidized shortly after the magnetic field disappearing. Based on this characteristic, the MRF is applied to a self-adaptive hand which can solidify the shape of the joint grasping the object and keep the grasping force under the help of springs. The MRF Hand is actuated initially by the reaction force from the grasped object and locked by the solidified MRF ultimately. The MRF Hand can keep the shape of the grasping object securely during the grasping process.
一种新型的具有磁流变流体固化的机械手
传统被动欠驱动手在其他活动关节或被抓物体产生反作用力的作用下,可以自适应抓取物体,但当反作用力消失时,可能会排斥物体,无法独立抓取。为了克服这一严重缺点,提出了一种新型的被动自适应欠驱动手设计,称为磁流变液手。磁流变液可以在产生断断续续的磁场时瞬间固化,并在磁场消失后不久液化。基于这一特点,将磁流变函数应用于自适应手,该手可以在弹簧的帮助下使抓取物体的关节形状凝固并保持抓取力。MRF手最初由被抓物体的反作用力驱动,最终被固化的MRF锁住。磁流变手可以在抓取过程中安全地保持抓取对象的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信