Optimal load shedding planning with genetic algorithm

Chao-Rong Chen, Wenta Tsai, Huayran Chen, Ching-Ying Lee, Chun-Ju Chen, H. Lan
{"title":"Optimal load shedding planning with genetic algorithm","authors":"Chao-Rong Chen, Wenta Tsai, Huayran Chen, Ching-Ying Lee, Chun-Ju Chen, H. Lan","doi":"10.1109/IAS.2011.6074299","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel planning method using genetic algorithm (GA) to achieve minimization of load shedding. The frequency of a power system declines rapidly when generator outage occurs. The general solution is to install sufficient under-frequency relays to pull frequency back to normal range. In this study, a single machine infinite bus (SMIB) is utilized to simulate system load with genetic algorithm for estimating the optimal load shedding and shedding ratio in each stage. Simulated results indicate that the proposed GA-based method is both feasible and effective to facilitate optimal load shedding planning.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper proposes a novel planning method using genetic algorithm (GA) to achieve minimization of load shedding. The frequency of a power system declines rapidly when generator outage occurs. The general solution is to install sufficient under-frequency relays to pull frequency back to normal range. In this study, a single machine infinite bus (SMIB) is utilized to simulate system load with genetic algorithm for estimating the optimal load shedding and shedding ratio in each stage. Simulated results indicate that the proposed GA-based method is both feasible and effective to facilitate optimal load shedding planning.
基于遗传算法的最优减载规划
提出了一种利用遗传算法实现减载最小化的规划方法。当发电机停运时,电力系统的频率迅速下降。一般的解决方案是安装足够的低频继电器将频率拉回正常范围。本研究利用单机无限总线(SMIB)模拟系统负荷,采用遗传算法估计各阶段的最优减载和减载比。仿真结果表明,基于遗传算法的方法是可行的、有效的,可以实现最优减载规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信