Water Waves and Light: Two Unlikely Partners

G. N. Koutsokostas, T. Horikis, D. Frantzeskakis, N. Antar, I. Bakirtas
{"title":"Water Waves and Light: Two Unlikely Partners","authors":"G. N. Koutsokostas, T. Horikis, D. Frantzeskakis, N. Antar, I. Bakirtas","doi":"10.5772/INTECHOPEN.95431","DOIUrl":null,"url":null,"abstract":"We study a generic model governing optical beam propagation in media featuring a nonlocal nonlinear response, namely a two-dimensional defocusing nonlocal nonlinear Schrödinger (NLS) model. Using a framework of multiscale expansions, the NLS model is reduced first to a bidirectional model, namely a Boussinesq or a Benney-Luke-type equation, and then to the unidirectional Kadomtsev-Petviashvili (KP) equation – both in Cartesian and cylindrical geometry. All the above models arise in the description of shallow water waves, and their solutions are used for the construction of relevant soliton solutions of the nonlocal NLS. Thus, the connection between water wave and nonlinear optics models suggests that patterns of water may indeed exist in light. We show that the NLS model supports intricate patterns that emerge from interactions between soliton stripes, as well as lump and ring solitons, similarly to the situation occurring in shallow water.","PeriodicalId":123873,"journal":{"name":"Nonlinear Optics - From Solitons to Similaritons","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics - From Solitons to Similaritons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.95431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a generic model governing optical beam propagation in media featuring a nonlocal nonlinear response, namely a two-dimensional defocusing nonlocal nonlinear Schrödinger (NLS) model. Using a framework of multiscale expansions, the NLS model is reduced first to a bidirectional model, namely a Boussinesq or a Benney-Luke-type equation, and then to the unidirectional Kadomtsev-Petviashvili (KP) equation – both in Cartesian and cylindrical geometry. All the above models arise in the description of shallow water waves, and their solutions are used for the construction of relevant soliton solutions of the nonlocal NLS. Thus, the connection between water wave and nonlinear optics models suggests that patterns of water may indeed exist in light. We show that the NLS model supports intricate patterns that emerge from interactions between soliton stripes, as well as lump and ring solitons, similarly to the situation occurring in shallow water.
水波和光:两个不可能的伙伴
我们研究了光束在具有非局部非线性响应的介质中传播的一般模型,即二维离焦非局部非线性Schrödinger (NLS)模型。使用多尺度展开的框架,NLS模型首先被简化为双向模型,即Boussinesq或benney - luke型方程,然后被简化为单向Kadomtsev-Petviashvili (KP)方程——在笛卡尔和圆柱几何中都是如此。上述模型均出现在浅水波的描述中,它们的解用于构造非局部NLS的相关孤子解。因此,水波和非线性光学模型之间的联系表明,水的模式可能确实存在于光中。我们表明,NLS模型支持从孤子条纹、块状孤子和环状孤子之间的相互作用中出现的复杂模式,类似于浅水中发生的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信