Breno David Lopes Pinheiro, E. Souza, Douglas Vitório, H. O. Albuquerque
{"title":"A Comparative Analysis of Machine Learning Named Entity Recognition Tools for the Brazilian and European Portuguese Language Variants","authors":"Breno David Lopes Pinheiro, E. Souza, Douglas Vitório, H. O. Albuquerque","doi":"10.5753/eniac.2021.18257","DOIUrl":null,"url":null,"abstract":"Informações textuais, apesar de digitais, não são computacionalmente estruturadas, necessitando do uso de técnicas para estruturá-las e extrair informações. Este trabalho tem o objetivo de avaliar ferramentas de REN utilizando machine learning para as variantes brasileira e europeia da língua portuguesa. As ferramentas Apache OpenNLP, Stanford CoreNLP e spaCy foram selecionadas; o corpus HAREM foi usado para treinar e avaliar os modelos; uma ferramenta foi desenvolvida para pré-processar o corpus HAREM. Dois tipos de comparações foram realizadas: uma geral e outra entre variantes do português. Foi possível identificar que as variantes podem afetar no treinamento e avaliação de modelos de REN (Reconhecimento de entidades nomeadas).","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Informações textuais, apesar de digitais, não são computacionalmente estruturadas, necessitando do uso de técnicas para estruturá-las e extrair informações. Este trabalho tem o objetivo de avaliar ferramentas de REN utilizando machine learning para as variantes brasileira e europeia da língua portuguesa. As ferramentas Apache OpenNLP, Stanford CoreNLP e spaCy foram selecionadas; o corpus HAREM foi usado para treinar e avaliar os modelos; uma ferramenta foi desenvolvida para pré-processar o corpus HAREM. Dois tipos de comparações foram realizadas: uma geral e outra entre variantes do português. Foi possível identificar que as variantes podem afetar no treinamento e avaliação de modelos de REN (Reconhecimento de entidades nomeadas).