Option Pricing in Jump Diffusion Models with Quadratic Spline Collocation

C. Christara, N. Leung
{"title":"Option Pricing in Jump Diffusion Models with Quadratic Spline Collocation","authors":"C. Christara, N. Leung","doi":"10.2139/ssrn.3729049","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a robust numerical method in pricing options, when the underlying asset follows a jump diffusion model. We demonstrate that, with the quadratic spline collocation method, the integral approximation in the pricing PIDE is intuitively simple, and comes down to the evaluation of the probabilistic moments of the jump density. When combined with a Picard iteration scheme, the pricing problem can be solved efficiently. We present the method and the numerical results from pricing European and American options with Merton's and Kou's models.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3729049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we develop a robust numerical method in pricing options, when the underlying asset follows a jump diffusion model. We demonstrate that, with the quadratic spline collocation method, the integral approximation in the pricing PIDE is intuitively simple, and comes down to the evaluation of the probabilistic moments of the jump density. When combined with a Picard iteration scheme, the pricing problem can be solved efficiently. We present the method and the numerical results from pricing European and American options with Merton's and Kou's models.
二次样条配置跳跃扩散模型中的期权定价
本文提出了当标的资产遵循跳跃扩散模型时,期权定价的鲁棒数值方法。我们证明,利用二次样条配置方法,定价PIDE中的积分近似直观简单,可以归结为对跳跃密度的概率矩的评估。结合Picard迭代方案,可以有效地解决定价问题。本文给出了用默顿模型和寇模型对欧美期权定价的方法和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信