Previsão de value-at-risk para o mercado de criptomoedas usando modelos EGARCH com regimes markovianos

P. Marschner, P. S. Ceretta
{"title":"Previsão de value-at-risk para o mercado de criptomoedas usando modelos EGARCH com regimes markovianos","authors":"P. Marschner, P. S. Ceretta","doi":"10.12660/rbfin.v18n3.2020.81186","DOIUrl":null,"url":null,"abstract":"This study aims to understand the volatile behavior of six highly representative cryptocurrencies. To do so, EGARCH and Markov-switching EGARCH models were estimated, combined with different distributions of statistical probability. The predictive capacity of the best models resulting from these combinations were tested by predicting the value-at-risk. The daily returns of the cryptocurrencies clearly show regime changes in their volatility dynamics. In the in-sample analysis, the regime change model confirms the existence of two states: the first characterized by a greater ARCH effect and less affected by asymmetries, while the second reveals a greater effect of the arrival of information, that is, it is more sensitive to asymmetric shocks. In the out-of-sample analysis, the value-at-risk predictions of the regime change model clearly exceed the single-regime model by the extreme quantile of 1%.","PeriodicalId":152637,"journal":{"name":"Brazilian Review of Finance","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/rbfin.v18n3.2020.81186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to understand the volatile behavior of six highly representative cryptocurrencies. To do so, EGARCH and Markov-switching EGARCH models were estimated, combined with different distributions of statistical probability. The predictive capacity of the best models resulting from these combinations were tested by predicting the value-at-risk. The daily returns of the cryptocurrencies clearly show regime changes in their volatility dynamics. In the in-sample analysis, the regime change model confirms the existence of two states: the first characterized by a greater ARCH effect and less affected by asymmetries, while the second reveals a greater effect of the arrival of information, that is, it is more sensitive to asymmetric shocks. In the out-of-sample analysis, the value-at-risk predictions of the regime change model clearly exceed the single-regime model by the extreme quantile of 1%.
使用带有马尔可夫方案的EGARCH模型预测加密货币市场的风险价值
本研究旨在了解六种极具代表性的加密货币的波动行为。为此,结合不同的统计概率分布,对EGARCH和马尔可夫切换EGARCH模型进行估计。通过对风险价值的预测来检验这些组合所产生的最佳模型的预测能力。加密货币的日收益清楚地显示了其波动性动态的机制变化。在样本内分析中,制度变化模型证实了两种状态的存在:第一种状态ARCH效应更大,受不对称影响较小;第二种状态受信息到达的影响更大,即对不对称冲击更敏感。在样本外分析中,制度变化模型的风险值预测明显超过单制度模型的极端分位数1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信