Analysis of the Convolutional Neural Network Model in Detecting Brain Tumor

Destiny Rankins, Dewayne A. Dixon, Yeona Kang, S. Kim
{"title":"Analysis of the Convolutional Neural Network Model in Detecting Brain Tumor","authors":"Destiny Rankins, Dewayne A. Dixon, Yeona Kang, S. Kim","doi":"10.24203/ijcit.v11i4.252","DOIUrl":null,"url":null,"abstract":"Detecting brain tumors is an active area of research in brain image processing. This paper proposes a methodology to segment and classify brain tumors using magnetic resonance images (MRI). Convolutional Neural Networks (CNN) are one of the effective detection methods and have been employed for tumor segmentation. We optimized the total number of layers and epochs in the model.  First, we run the CNN with 1000 epochs to see its best-optimized number.  Then we consider six models, increasing the number of layers from one to six.  It allows seeing the overfitting according to the number of layers.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v11i4.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting brain tumors is an active area of research in brain image processing. This paper proposes a methodology to segment and classify brain tumors using magnetic resonance images (MRI). Convolutional Neural Networks (CNN) are one of the effective detection methods and have been employed for tumor segmentation. We optimized the total number of layers and epochs in the model.  First, we run the CNN with 1000 epochs to see its best-optimized number.  Then we consider six models, increasing the number of layers from one to six.  It allows seeing the overfitting according to the number of layers.
卷积神经网络在脑肿瘤检测中的应用分析
脑肿瘤检测是脑图像处理领域的一个活跃研究领域。本文提出了一种利用磁共振图像对脑肿瘤进行分割和分类的方法。卷积神经网络(CNN)是一种有效的检测方法,已被用于肿瘤分割。我们优化了模型的总层数和epoch数。首先,我们用1000个epoch运行CNN,看看它的最佳优化数字。然后我们考虑六个模型,将层数从一个增加到六个。它允许根据层数看到过拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信