A. Schlemmer, Henning Zwirnmann, M. Zabel, U. Parlitz, S. Luther
{"title":"Evaluation of machine learning methods for the long-term prediction of cardiac diseases","authors":"A. Schlemmer, Henning Zwirnmann, M. Zabel, U. Parlitz, S. Luther","doi":"10.1109/ESGCO.2014.6847567","DOIUrl":null,"url":null,"abstract":"We evaluate several machine learning algorithms in the context of long-term prediction of cardiac diseases. Results from applying K Nearest Neighbors Classifiers (KNN), Support Vector Machines (SVM) and Random Forests (RF) to data from a cardiological long-term study suggests that multivariate methods can significantly improve classification results. SVMs were found to yield the best results in Matthews Correlation Coefficient and are most stable with respect to a varying number of features.","PeriodicalId":385389,"journal":{"name":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESGCO.2014.6847567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We evaluate several machine learning algorithms in the context of long-term prediction of cardiac diseases. Results from applying K Nearest Neighbors Classifiers (KNN), Support Vector Machines (SVM) and Random Forests (RF) to data from a cardiological long-term study suggests that multivariate methods can significantly improve classification results. SVMs were found to yield the best results in Matthews Correlation Coefficient and are most stable with respect to a varying number of features.